Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Biomechanical Analysis Of Athletes Sprinting With Varying Degrees Of Resistance, Michaela Ott Apr 2022

Biomechanical Analysis Of Athletes Sprinting With Varying Degrees Of Resistance, Michaela Ott

Honors Theses

Utilizing resistance methods for sprinters is a common approach to their training. In this study, six athletes from the University of Nebraska-Lincoln Women’s Track and Field Team ran a series of sprints using a resistance machine to collect data regarding the change in power output, stride length, level of trunk tilt with respect to the ground, and acceleration throughout a distance of ten meters when different amounts of resistant forces were applied to the athlete. It was hypothesized that as resistance increased, power output would increase, stride length would decrease, the runners would become more horizontal resulting in a larger …


Optimizing Athletic Throwing Power For Increased Training Efficiency, Ian Ghanavati, Curtis Tomasevicz Apr 2020

Optimizing Athletic Throwing Power For Increased Training Efficiency, Ian Ghanavati, Curtis Tomasevicz

UCARE Research Products

A summary on the investigation of the mechanics of weighted baseball pitching.

• The demand for higher pitch velocity has increased at all levels of competitive play within baseball • Weighted baseball training programs are a common way to increase pitch velocity • The efficacy and safety of weighted ball throwing is not fully understood • The aim of this study is to further investigate the mechanics of pitching under and overweight balls in order to better understand their role in athletic training


Perturbed Stress Field Of The Human Lens Capsule After Cataract Surgery, Kurt Ameku, Caleb Berggren, Ryan M. Pedrigi Apr 2020

Perturbed Stress Field Of The Human Lens Capsule After Cataract Surgery, Kurt Ameku, Caleb Berggren, Ryan M. Pedrigi

UCARE Research Products

Current modeling of the human lens capsule has been focused on the mechanism of accommodation and its decline with age, but few studies have modeled the effects of cataract surgery and quantified the altered mechanical environment introduced by the procedure. The goal of this study is to develop the first fully 3-D finite element model of the post-surgical human lens capsule with an implanted device in order to characterize lens capsule mechanics after cataract surgery. The model demonstrates a highly perturbed stress field compared to the native state, which we hypothesize is the primary driving force behind the long-term errant …


Disturbed Cyclical Stretch Of Endothelial Cells Promotes Nuclear Expression Of The Pro-Atherogenic Transcription Factor Nf-Kb, Ryan M. Pedrigi, Konstantinos I. Papadimitriou, Avinash Kondiboyina, Sukhjinder Sidhu, James Chau, Miten B. Patel, Daniel C. Baeriswyl, Emmanuel M. Drakakis, Rob Krams Jan 2017

Disturbed Cyclical Stretch Of Endothelial Cells Promotes Nuclear Expression Of The Pro-Atherogenic Transcription Factor Nf-Kb, Ryan M. Pedrigi, Konstantinos I. Papadimitriou, Avinash Kondiboyina, Sukhjinder Sidhu, James Chau, Miten B. Patel, Daniel C. Baeriswyl, Emmanuel M. Drakakis, Rob Krams

Department of Mechanical and Materials Engineering: Faculty Publications

Exposure of endothelial cells to low and multidirectional blood flow is known to promote a pro-atherogenic phenotype. The mechanics of the vessel wall is another important mechano-stimulus within the endothelial cell environment, but no study has examined whether changes in the magnitude and direction of cell stretch can be pro-atherogenic. Herein, we developed a custom cell stretching device to replicate the in vivo stretch environment of the endothelial cell and examined whether low and multidirectional stretch promote nuclear translocation of NF-kB. A fluid–structure interaction model of the device demonstrated a nearly uniform strain within the region of cell attachment and …


Influence Of Shear Stress Magnitude And Direction On Atherosclerotic Plaque Composition, Ryan M. Pedrigi, Vikram V. Mehta, Sandra M. Bovens, Zahra Mohri, Christian Bo Poulsen, Willy Gsell, Jordi L. Tremoleda, Leila Towhidi, Ranil De Silva, Enrico Petretto, Rob Krams Jan 2016

Influence Of Shear Stress Magnitude And Direction On Atherosclerotic Plaque Composition, Ryan M. Pedrigi, Vikram V. Mehta, Sandra M. Bovens, Zahra Mohri, Christian Bo Poulsen, Willy Gsell, Jordi L. Tremoleda, Leila Towhidi, Ranil De Silva, Enrico Petretto, Rob Krams

Department of Mechanical and Materials Engineering: Faculty Publications

The precise flow characteristics that promote different atherosclerotic plaque types remain unclear. We previously developed a blood flow-modifying cuff for ApoE−/− mice that induces the development of advanced plaques with vulnerable and stable features upstream and downstream of the cuff, respectively. Herein, we sought to test the hypothesis that changes in flow magnitude promote formation of the upstream (vulnerable) plaque, whereas altered flow direction is important for development of the downstream (stable) plaque. We instrumented ApoE−/− mice (n=7) with a cuff around the left carotid artery and imaged them with micro-CT (39.6 μm resolution) eight to nine weeks …


Biomechanical Investigation Of Elite Place-Kicking, Chase M. Pfeifer Nov 2015

Biomechanical Investigation Of Elite Place-Kicking, Chase M. Pfeifer

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Many studies aim to understand the fundamentals of kicking commonly displayed by soccer players [4,6,10,16,17,18,24,25,28,29,30,34,36,38,40]. Of those studies, most are limited to a two-dimensional (2D) analysis using high-speed cameras for position tracking or utilizing electromyography to observe the activity of select muscles [4,6,18,25,29,36]. The few studies that investigate kicking using a three-dimensional (3D) model are limited in their position tracking capabilities and focus mainly on joint flexion potentials and foot speed.

This dissertation is a comprehensive biomechanical analysis (kinematic and EMG) of the field-goal place-kicking techniques of four elite kickers in American football. Data were compared and contrasted with ball …


Quantification Of Plaque Stiffness By Brillouin Microscopy In Experimental Thin Cap Fibroatheroma, Giuseppe Antonacci, Ryan M. Pedrigi, Avinash Kondiboyina, Vikram V. Mehta, Ranil De Silva, Carl Paterson, Rob Krams, Peter Torok Jan 2015

Quantification Of Plaque Stiffness By Brillouin Microscopy In Experimental Thin Cap Fibroatheroma, Giuseppe Antonacci, Ryan M. Pedrigi, Avinash Kondiboyina, Vikram V. Mehta, Ranil De Silva, Carl Paterson, Rob Krams, Peter Torok

Department of Mechanical and Materials Engineering: Faculty Publications

Plaques vulnerable to rupture are characterized by a thin and stiff fibrous cap overlaying a soft lipid-rich necrotic core. The ability to measure local plaque stiffness directly to quantify plaque stress and predict rupture potential would be very attractive, but no current technology does so. This study seeks to validate the use of Brillouin microscopy to measure the Brillouin frequency shift, which is related to stiffness, within vulnerable plaques. The left carotid artery of an ApoE-/- mouse was instrumented with a cuff that induced vulnerable plaque development in nine weeks. Adjacent histological sections from the instrumented and control arteries …


Regional Mechanical Properties And Stress Analysis Of The Human Anterior Lens Capsule, Ryan M. Pedrigi, G. David, J. Dziezyc, J. D. Humphrey Jan 2007

Regional Mechanical Properties And Stress Analysis Of The Human Anterior Lens Capsule, Ryan M. Pedrigi, G. David, J. Dziezyc, J. D. Humphrey

Department of Mechanical and Materials Engineering: Faculty Publications

The lens capsule of the eye functions, in part, as a deformable support through which the ciliary body applies tractions that can alter lens curvature and corresponding refractive power during the process of accommodation. Although it has long been recognized that characterization of the mechanical properties of the lens capsule is fundamental to understanding this physiologic process as well as clinical interventions, prior data have been limited by one-dimensional testing of excised specimens despite the existence of multiaxial loading in vivo. In this paper, we employ a novel experimental approach to study in situ the regional, multiaxial mechanical behavior of …


Effects Of Age-Related Gait Changes On The Biomechanics Of Slips And Falls, Thurman E. Lockheart, Jeffrey C. Woldstad, James L. Smith Jan 2003

Effects Of Age-Related Gait Changes On The Biomechanics Of Slips And Falls, Thurman E. Lockheart, Jeffrey C. Woldstad, James L. Smith

Department of Industrial and Management Systems Engineering: Faculty Publications

A laboratory study was conducted to examine gait changes associated with aging and the effect of these changes on initiation of slips and frequency of falls utilizing newly defined biomechanical parameters of slips and falls. Twenty-eight participants from two age groups (young and old) walked around a circular track at a comfortable pace wearing a safety harness. A slippery floor surface was placed on the walking track over the force plate at random time intervals without the participants’ awareness. Synchronized kinetic and kinematic measurements were obtained on both slippery and non-slippery walking surfaces. The results indicated that older participants’ horizontal …