Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Ag-Iot For Crop And Environment Monitoring: Past, Present, And Future, Nipuna Chamara, Md Didarul Islam, Geng Bai, Yeyin Shi, Yufeng Ge Sep 2022

Ag-Iot For Crop And Environment Monitoring: Past, Present, And Future, Nipuna Chamara, Md Didarul Islam, Geng Bai, Yeyin Shi, Yufeng Ge

Department of Biological Systems Engineering: Papers and Publications

CONTEXT: Automated monitoring of the soil-plant-atmospheric continuum at a high spatiotemporal resolution is a key to transform the labor-intensive, experience-based decision making to an automatic, data-driven approach in agricultural production. Growers could make better management decisions by leveraging the real-time field data while researchers could utilize these data to answer key scientific questions. Traditionally, data collection in agricultural fields, which largely relies on human labor, can only generate limited numbers of data points with low resolution and accuracy. During the last two decades, crop monitoring has drastically evolved with the advancement of modern sensing technologies. Most importantly, the introduction …


Emissivity Prediction Of Functionalized Surfaces Using Artificial Intelligence, Greg Acosta, Andrew Reicks, Miguel Moreno, Alireza Borjali, Craig Zuhlke, Mohammad Ghashami Jan 2022

Emissivity Prediction Of Functionalized Surfaces Using Artificial Intelligence, Greg Acosta, Andrew Reicks, Miguel Moreno, Alireza Borjali, Craig Zuhlke, Mohammad Ghashami

Department of Mechanical and Materials Engineering: Faculty Publications

Tuning surface emissivity has been of great interest in thermal radiation applications, such as thermophotovoltaics and passive radiative cooling. As a low-cost and scalable technique for manufacturing surfaces with desired emissivities, femtosecond laser surface processing (FLSP) has recently drawn enormous attention. Despite the versatility offered by FLSP, there is a knowledge gap in accurately predicting the outcome emissivity prior to fabrication. In this work, we demonstrate the immense advantage of employing artificial intelligence (AI) techniques to predict the emissivity of complex surfaces. For this aim, we used FLSP to fabricate 116 different aluminum samples. A comprehensive dataset was established by …