Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Engineering

Towards Higher Power Factor In Semiconductor Thermoelectrics: Bandstructure Engineering And Potential Barriers, Adithya Kommini Oct 2021

Towards Higher Power Factor In Semiconductor Thermoelectrics: Bandstructure Engineering And Potential Barriers, Adithya Kommini

Doctoral Dissertations

To keep up with the current energy demand and to sustain the growth requires efficient use of existing resources. One of the ways to improve efficiency is by converting waste heat to electricity using thermoelectrics. Thermoelectric devices work on the principle of Seebeck effect, where an applied temperature difference across the material results in a potential difference in the material. The possibility of drastic improvements in the efficiency of thermoelectric (TE) devices using semiconductor nanostructured materials renewed interest in thermoelectrics over the last three decades. Introducing confinement, interfaces, and quantum effects using nanostructures for additional control of charge and phonon …


Advanced Materials Design Using Application-Based Processing Techniques, Daniel S. Camarda Oct 2021

Advanced Materials Design Using Application-Based Processing Techniques, Daniel S. Camarda

Doctoral Dissertations

This dissertation pertains to generating advanced materials using application-based processing techniques. First, billets consisting of PTFE sintering powders are evaluated using Thermomechancal Analysis. It was found that both shape change and volume change are associated with enthalpic and entropic recoil, respectively. These phenomena, due to melting and stored energy during the powder compaction process, were found to be molecular weight dependent. Additionally, kinetics of the recovery and sintering process were found to be slower in blended specimens than pure samples. Next, the creation of graft copolymers by selectively grafting a second polymer to the amorphous fraction of a semi-crystalline polymer …


Extracellular Polymeric Substances In Oxygenic Photogranules: Investigation Of Their Role In Photogranulation In A Hydrostatic Environment, Wenye Camilla Kuo-Dahab Sep 2021

Extracellular Polymeric Substances In Oxygenic Photogranules: Investigation Of Their Role In Photogranulation In A Hydrostatic Environment, Wenye Camilla Kuo-Dahab

Doctoral Dissertations

The purpose of this dissertation was to assess the critical role of extracellular polymeric substances (EPS) in the photogranulation of activated sludge, in a hydrostatic environment. The first section evaluates the fate and dynamics of different fractions of EPS in sludge-based photogranulation under hydrostatic conditions. The study shows that during the transformation of activated sludge into a photogranular biomass, sludge’s base-extractable proteins selectively degrade. Strong correlations between base-extracted proteins and the growth of chlorophyll a and chlorophyll a/b ratio suggest that the bioavailability of this organic nitrogen is linked with selection and enrichment of filamentous cyanobacteria under hydrostatic conditions. The …


Tall Timber In Denver: An Exploration Of New Forms In Large Scale Timber Architecture, Andrew P. Weuling Jul 2021

Tall Timber In Denver: An Exploration Of New Forms In Large Scale Timber Architecture, Andrew P. Weuling

Masters Theses

Wood has been utilized by humans for thousands of years in the construction of our built environment. More recently, our expanded understanding of the material and the advancement of engineered wood have allowed us to use wood like never before. Concrete and steel, however, have emerged as the main materials used in large scale construction in the late 19th and 20th Centuries. As we are battling and searching for solutions to climate change, the importance of wood in large scale construction has increased as not only is its carbon intensity is lower than steel and concrete, but its …


Designing Stimuli-Responsive Nanocomposites To Investigate Interface Dynamics, Huyen Vu Jul 2021

Designing Stimuli-Responsive Nanocomposites To Investigate Interface Dynamics, Huyen Vu

Doctoral Dissertations

Inspired by nature, this research focuses on designing multifunctional renewable nanocomposites with high toughness and stimuli-responsiveness. In recent years, cellulose nanocrystals (CNCs) have been explored due to their abundance, renewable resource, and unique mechanical strength and structural coloration. CNCs naturally self-assemble into the helicoidal (Bouligand) structure that effectively endure high impacts but is brittle without an attendant soft phase. A thermoresponsive polymer, poly(diethylene glycol methyl ether methacrylate) (PMEO2MA), was incorporated into CNCs via evaporation-induced self-assembly to improve toughness of the resulting nanocomposites and to study responses in polymer dynamics under varying temperature and humidity conditions. To study microscopic …


Thermoelectric Transport In Disordered Organic And Inorganic Semiconductors, Meenakshi Upadhyaya Jul 2021

Thermoelectric Transport In Disordered Organic And Inorganic Semiconductors, Meenakshi Upadhyaya

Doctoral Dissertations

The need for alternative energy sources has led to extensive research on optimizing the conversion efficiency of thermoelectric (TE) materials. TE efficiency is governed by figure-of-merit (ZT) and it has been an enormously challenging task to increase ZT > 1 despite decades of research due to the interdependence of material properties. Most doped inorganic semiconductors have a high electrical conductivity and moderate Seebeck coefficient, but ZT is still limited by their high lattice thermal conductivity. One approach to address this problem is to decrease thermal conductivity by means of alloying and nanostructuring, another is to consider materials with an inherently low …


Engineering Advanced Material Properties For Polymeric Materials Through Miscible And Immiscible Additives, Chinmay M. Saraf Jun 2021

Engineering Advanced Material Properties For Polymeric Materials Through Miscible And Immiscible Additives, Chinmay M. Saraf

Doctoral Dissertations

This dissertation focuses on engineering polymeric formulations using strategically selected additives or novel processes to achieve advanced material properties. The first chapter reviews the state-of-the-art impact modification and discusses micro-mechanics associated with soft particle toughening of polymeric materials. We present an analytical solution to elucidate the effect of concentration of rubbery domains on matrix yielding and energy absorption. Soft particle toughening relies on particle size, interparticle spacing, and concentration of rubbery phase. The second chapter demonstrates developing impact modified stereolithography (SLA) resins for the superior energy absorption of the SLA printed thermosets. SLA resins are engineered using additives that remain …


Material Property Heterogeneity In Dimensional Lumber And Its Relationship To Mass Timber Performance, Fiona O'Donnell Jun 2021

Material Property Heterogeneity In Dimensional Lumber And Its Relationship To Mass Timber Performance, Fiona O'Donnell

Doctoral Dissertations

According to the Environmental Protection Agency, buildings account for 38% of the United States' carbon dioxide emissions, providing architects and structural engineers a unique opportunity to mitigate a significant factor driving climate change by implementing innovative and sustainable technology in infrastructure design. Wood and mass timber products are becoming an increasingly popular alternative building material due to their economic and environmental benefits. The natural growth of wood leads to highly heterogeneous material properties. Defects such as checks, knots, and localized slope of grain contribute to some of this variation; however, wood properties vary significantly even in clear wood. Using mass …


Electro-Thermal Transport In Two-Dimensional Materials And Their Heterostructures, Arnab K. Majee Jun 2021

Electro-Thermal Transport In Two-Dimensional Materials And Their Heterostructures, Arnab K. Majee

Doctoral Dissertations

”Smaller is better” is the mantra that has driven semiconductor industry for the past 50 years. The on-going quest for faster electronic switching, higher transistor density, and better device performance, has been driven by a self-fulfilling prophecy popularly known as Moore’s law, according to which the number of transistors per unit area of a chip doubles itself approximately every two years. A modern smartphone has about 8 billion transistors, which is as large as current earth’s population. Although each transistor dissipates negligible power, but the collective power dissipation from all the transistors in an electronic gadget and inefficient heat removing …


Direct Printing/Coating/Plating Of Key Components For Electronic Devices, Xiyu Hu Jun 2021

Direct Printing/Coating/Plating Of Key Components For Electronic Devices, Xiyu Hu

Doctoral Dissertations

Miniaturization has been a technological trend for several decades for electronic devices. From the practical point of view, the successful miniaturization of fully integrated systems mainly depends on their components. This dissertation examines the inkjet printing of copper oxide inks on flexible substrates for applications in microfluidic valving systems. We expand the knowledge of low-cost and high-performance electrowetting valves and fabricate the microfluidic device for fluidic control, which is necessary to enable the next-generation microfluidic devices. In addition, we also study the electromagnetic interference (EMI) shielding material, which is a crucial part of electronic devices. The basic theory of EMI …


Harnessing The Mechanics Of Thin-Walled Metallic Structures: From Plate-Lattice Materials To Cold-Formed Steel Shear Walls, Fani Derveni Jun 2021

Harnessing The Mechanics Of Thin-Walled Metallic Structures: From Plate-Lattice Materials To Cold-Formed Steel Shear Walls, Fani Derveni

Doctoral Dissertations

Thin-walled structures have received a lot of interest during the last years due to their light weight, cost efficiency, and ease in fabrication and transportation, along with their high strength and stiffness. This dissertation focuses on the mechanical performance of thin-walled metallic structures from cold-formed steel shear walls and connections (PART I) to plate-lattice architected materials (PART II) via computational, experimental, and probabilistic methods. Cold-formed steel (CFS) shear walls subjected to seismic loads is the focus of PART I of this dissertation. An innovative three-dimensional shell finite element model of oriented strand board (OSB) sheathed CFS shear walls is introduced …


Surface Modification Of Cellulose Nanocrystals: Imparting Non-Native Properties On Sustainable Substrates, Allen C. Chang May 2021

Surface Modification Of Cellulose Nanocrystals: Imparting Non-Native Properties On Sustainable Substrates, Allen C. Chang

Doctoral Dissertations

Governments and scientists all over the planet have recognized the importance of pursuing and achieving sustainability. As the human population grows and technologies advance, the planet’s limited resources become less and less able to support our taxing demands. In 2015, the United Nations set forth 17 Sustainable Development Global Goals. Goal 12 “Responsible Production and Consumption” can be addressed quite readily by the integration of sustainable materials into advanced technologies; however, such materials have yet to be developed. Cellulose nanocrystals (CNCs) – an abundant, well-known sustainable nanomaterial hydrolyzed from bulk cellulose with high surface functionality and high strength properties – …


Tribo-Corrosion Response Of Additively Manufactured High-Entropy Alloy, Jibril Shittu, Maryam Sadeghilaridjani, Mayur Pole, Saideep Muskeri, Jie Ren, Yanfang Liu, Ismael Tahoun, Harpreet Arora, Wen Chen, Narendra Dahotre Jan 2021

Tribo-Corrosion Response Of Additively Manufactured High-Entropy Alloy, Jibril Shittu, Maryam Sadeghilaridjani, Mayur Pole, Saideep Muskeri, Jie Ren, Yanfang Liu, Ismael Tahoun, Harpreet Arora, Wen Chen, Narendra Dahotre

Mechanical and Industrial Engineering Faculty Publication Series

High-entropy alloys (HEAs) with multiple principal elements represent a paradigm shift in structural alloy design and show excellent surface degradation resistance in corrosive environment. Here, the tribo-corrosion response of laser-engineered net-shaped CoCrFeMnNi HEA was evaluated in 3.5 wt% NaCl solution at room temperature. The additively manufactured (AM-ed) CoCrFeMnNi showed five times lower wear rate, regenerative passivation, and nobler corrosion potential during tribo-corrosion test compared to its arc-melted counterpart. A significant anisotropy was seen in the tribo-corrosion response with 45 degrees to the build direction showing better performance compared to tests along the build direction and perpendicular to it. The open …


Strain Effects On The Diffusion Properties Of Near-Surface Self-Interstitial Atoms And Adatoms In Tungsten, Bochuan Sun, Dimitrios Maroudas, Brian D. Wirth, Enrique Martínez Jan 2021

Strain Effects On The Diffusion Properties Of Near-Surface Self-Interstitial Atoms And Adatoms In Tungsten, Bochuan Sun, Dimitrios Maroudas, Brian D. Wirth, Enrique Martínez

Chemical Engineering Faculty Publication Series

Tungsten (W) is a candidate for the plasma-facing components and divertor in future fusion applications. The material will be subject to a large particle influx (mainly helium and hydrogenic species) that will form bubbles. As bubbles grow, they compress the material, adding to thermal stresses, and eject self-interstitial atoms (SIAs-isolated or in clusters) to release internal pressure. These SIAs diffuse towards the surface in large stress/strain fields and on the surface are thought to act as precursors for nanotendril formation (also known as fuzz) that develops on the material surface modifying its morphology. In this work we analyze the effect …