Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Metabolic Modeling Of Cystic Fibrosis Airway Microbiota From Patient Samples, Arsh Vyas Oct 2021

Metabolic Modeling Of Cystic Fibrosis Airway Microbiota From Patient Samples, Arsh Vyas

Masters Theses

Cystic Fibrosis (CF) is a genetic disorder, found with higher prevalence in the Caucasian population, affecting > 30,000 individuals in the United States and > 70,000 worldwide. Due to the astoundingly high rate of mortality among CF patients being attributed to respiratory failure brought on by chronic bacterial infections and subsequent airway inflammation, there has been a lot of focus on systematically analyzing CF lung airway communities. While it is observed traditionally that Pseudomonas aeruginosa is the most threatening and persistent CF colonizer due to high antibiotic resistance, recent studies have elicited the roles of other pathogens and it has been widely …


Spatiotemporal Metabolic Modeling Of Pseudomonas Aeruginosa Biofilm Expansion, Robert Sourk Oct 2021

Spatiotemporal Metabolic Modeling Of Pseudomonas Aeruginosa Biofilm Expansion, Robert Sourk

Masters Theses

Spatiotemporal metabolic modeling of microbial metabolism is a step closer to achieving higher dimensionalities in numerical studies (in silico) of biofilm maturation. Dynamic Flux Balance Analysis (DFBA) is an advanced modeling technique because this method incorporates Genome Scale Metabolic Modeling (GSMM) to compute the biomass growth rate and metabolite fluxes. Biofilm thickness is pertinent because this variable of biofilm maturation can be measured in a laboratory (in vitro). Pseudomonas aeruginosa (P. aeruginosa) is the model bacterium used in this computational model based on previous research conducted by Dr. Michael Henson, available GSMMs, and the societal significance of patients suffering from …


Metabolic Modeling Of Bacterial Co-Cultures For Co-To-Butyrate Conversion In Bubble Column Bioreactors, Naresh Kandlapalli Oct 2021

Metabolic Modeling Of Bacterial Co-Cultures For Co-To-Butyrate Conversion In Bubble Column Bioreactors, Naresh Kandlapalli

Masters Theses

One of the most promising routes to renewable liquid fuels and chemicals is the fermentation of waste carbon by specialized microbes. Commercial development of gas fermentation technology is underway but many fundamental research problems must be addressed to further advance the technology towards economic competitiveness. This thesis addresses the important problem of developing integrated metabolic and transport models that predict gas fermentation performance in industrially relevant bubble column reactors. The computational models describe the conversion of CO-rich waste streams including synthesis gas to the platform chemical butyrate. The proposed modeling approach involves combining genome-scale reconstructions of bacterial species metabolism with …


Novel Approaches Towards Improved Purity In High Yield Transcription Reactions, Elvan Cavac Jun 2021

Novel Approaches Towards Improved Purity In High Yield Transcription Reactions, Elvan Cavac

Doctoral Dissertations

High yields of RNA (e.g., mRNA, gRNA, lncRNA) are routinely prepared following a two-step approach: high yield in vitro transcription using T7 RNA polymerase, followed by extensive purification using gel or chromatic methods. In high yield transcription reactions, as RNA accumulates in solution, T7 RNA polymerase rebinds and extends the encoded RNA (using the RNA as a template), resulting in a product pool contaminated with longer than desired, (partially) double stranded impurities. Current purification methods often fail to fully eliminate these impurities which, if present in therapeutics, can stimulate the innate immune response with potentially fatal consequences. This study establishes …


Metabolic Modeling Of Gas Fermentation For Renewable Fuel And Chemical Production, Xiangan Li Apr 2021

Metabolic Modeling Of Gas Fermentation For Renewable Fuel And Chemical Production, Xiangan Li

Doctoral Dissertations

Gas fermentation has emerged as a technologically and economically attractive option for producing renewable fuels and chemicals from carbon monoxide (CO) rich waste streams. As compared to traditional catalyst technologies, microbial systems have several advantages including operation near ambient temperature and pressure, high conversion efficiencies, robustness to gas impurities and high product yields that have motivated both fundamental research and commercial development. While microbial production of high-value products from waste gases is challenging because wild-type strains capable of gas consumption tend to synthesize these products at low yields, strategy like metabolically engineering the gas fermenting acetogens have been studied to …