Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Microstructural Properties And Four-Point Bend Fatigue Behavior Of Ti-6.5al-2zr-1mo-1v Welded Joints By Electron Beam Welding, Peng Liu, Tongguang Zhai, Yuanbin Zhang Jun 2016

Microstructural Properties And Four-Point Bend Fatigue Behavior Of Ti-6.5al-2zr-1mo-1v Welded Joints By Electron Beam Welding, Peng Liu, Tongguang Zhai, Yuanbin Zhang

Chemical and Materials Engineering Faculty Publications

With the help of a four-point-bend of fatigue rig, high-cycle fatigue tests were carried out on an Ti–6.5Al–2Zr-1Mo-1V titanium alloy at room temperature, 20 Hz and R = 0.1 in ambient air. The test results indicated that the fatigue strength of base metal, 888 MPa, is about 120% of yield strength. The fatigue strength of joints is 814 MPa. It is about 110% of yield strength of base metal. When the loading stress is higher, the fatigue failure region is located in middle weld zone of weld face, which the cracks are propagated along coarse β phase’s grain boundary. When …


The Effects Of Thermal Procedure On Transformation Temperature, Crystal Structure And Microstructure Of Cu-Al-Co Shape Memory Alloy, Y. Aydoğdu, M. Kök, F. Dağdelen, A. Aydoğdu, Ali S. Turabi, Haluk E. Karaca Jan 2016

The Effects Of Thermal Procedure On Transformation Temperature, Crystal Structure And Microstructure Of Cu-Al-Co Shape Memory Alloy, Y. Aydoğdu, M. Kök, F. Dağdelen, A. Aydoğdu, Ali S. Turabi, Haluk E. Karaca

Mechanical Engineering Faculty Publications

The purpose of this study is to investigate the effects of different thermal procedures of the Cu-Al-Co shape memory alloy on its crystal structure, transformation temperature and microstructure. The alloys were subjected to a heat treatment and then cooling was applied at four different conditions. After the thermal process, XRD, DSC, optical microscopy and micro-hardness measurements were carried out. The experimental studies showed that crystal structure, microstructure and transformation temperature of Cu-Al-Co alloy were changed from the cooling conditions.