Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Portland State University

Mechanical and Materials Engineering Faculty Publications and Presentations

Series

2021

Contact angle

Articles 1 - 2 of 2

Full-Text Articles in Engineering

The Ejection Of Large Non-Oscillating Droplets From A Hydrophobic Wedge In Microgravity, Logan Torres, Mark M. Weislogel Dec 2021

The Ejection Of Large Non-Oscillating Droplets From A Hydrophobic Wedge In Microgravity, Logan Torres, Mark M. Weislogel

Mechanical and Materials Engineering Faculty Publications and Presentations

When confined within containers or conduits, drops and bubbles migrate to regions of minimum energy by the combined effects of surface tension, surface wetting, system geometry, and initial conditions. Such capillary phenomena are exploited for passive phase separation operations in micro-fluidic devices on earth and macro-fluidic devices aboard spacecraft. Our study focuses on the migration and ejection of large inertial-capillary drops confined between tilted planar hydrophobic substrates (a.k.a., wedges). In our experiments, the brief nearly weightless environment of a 2.1 s drop tower allows for the study of such capillary dominated behavior for up to 10 mL water drops with …


The Draining Of Capillary Liquids From Containers With Interior Corners Aboard The Iss, Joshua Thomas Mccraney, Mark M. Weislogel, Paul Steen Nov 2021

The Draining Of Capillary Liquids From Containers With Interior Corners Aboard The Iss, Joshua Thomas Mccraney, Mark M. Weislogel, Paul Steen

Mechanical and Materials Engineering Faculty Publications and Presentations

In this work, we analyze liquid drains from containers in effective zero-g conditions aboard the International Space Station (ISS). The efficient draining of capillary fluids from conduits, containers, and media is critical in particular to high-value liquid samples such as minuscule biofluidics processing on earth and enormous cryogenic fuels management aboard spacecraft. The amount and rate of liquid drained can be of key concern. In the absence of strong gravitational effects, system geometry, and liquid wetting dominate capillary fluidic behavior. During the years 2010–2015, NASA conducted a series of handheld experiments aboard the ISS to observe “large” length scale capillary …