Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

A Multi-Step Nonlinear Dimension-Reduction Approach With Applications To Bigdata, R. Krishnan, V. A. Samaranayake, Jagannathan Sarangapani Apr 2018

A Multi-Step Nonlinear Dimension-Reduction Approach With Applications To Bigdata, R. Krishnan, V. A. Samaranayake, Jagannathan Sarangapani

Mathematics and Statistics Faculty Research & Creative Works

In this paper, a multi-step dimension-reduction approach is proposed for addressing nonlinear relationships within attributes. In this work, the attributes in the data are first organized into groups. In each group, the dimensions are reduced via a parametric mapping that takes into account nonlinear relationships. Mapping parameters are estimated using a low rank singular value decomposition (SVD) of distance covariance. Subsequently, the attributes are reorganized into groups based on the magnitude of their respective singular values. The group-wise organization and the subsequent reduction process is performed for multiple steps until a singular value-based user-defined criterion is satisfied. Simulation analysis is …


Direct Error Driven Learning For Deep Neural Networks With Applications To Bigdata, R. Krishnan, Jagannathan Sarangapani, V. A. Samaranayake Apr 2018

Direct Error Driven Learning For Deep Neural Networks With Applications To Bigdata, R. Krishnan, Jagannathan Sarangapani, V. A. Samaranayake

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, generalization error for traditional learning regimes-based classification is demonstrated to increase in the presence of bigdata challenges such as noise and heterogeneity. To reduce this error while mitigating vanishing gradients, a deep neural network (NN)-based framework with a direct error-driven learning scheme is proposed. To reduce the impact of heterogeneity, an overall cost comprised of the learning error and approximate generalization error is defined where two NNs are utilized to estimate the costs respectively. To mitigate the issue of vanishing gradients, a direct error-driven learning regime is proposed where the error is directly utilized for learning. It …


Determination Of Rule Patterns In Complex Event Processing Using Machine Learning Techniques, Nijat Mehdiyev, Julian Krumeich, David Lee Enke, Dirk Werth, Peter Loos Nov 2015

Determination Of Rule Patterns In Complex Event Processing Using Machine Learning Techniques, Nijat Mehdiyev, Julian Krumeich, David Lee Enke, Dirk Werth, Peter Loos

Engineering Management and Systems Engineering Faculty Research & Creative Works

Complex Event Processing (CEP) is a novel and promising methodology that enables the real-time analysis of stream event data. The main purpose of CEP is detection of the complex event patterns from the atomic and semantically low-level events such as sensor, log, or RFID data. Determination of the rule patterns for matching these simple events based on the temporal, semantic, or spatial correlations is the central task of CEP systems. In the current design of the CEP systems, experts provide event rule patterns. Having reached maturity, the Big Data Systems and Internet of Things (IoT) technology require the implementation of …