Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Explosively Formed Projectile Soft-Recovery Force Analysis, Laurin Bookout, Phillip R. Mulligan, Jason Baird Dec 2012

Explosively Formed Projectile Soft-Recovery Force Analysis, Laurin Bookout, Phillip R. Mulligan, Jason Baird

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

The design of a soft-recovery system is critical to a researcher's ability to analyze hypervelocity projectiles. The researcher may decide to use one method over another based on several criteria, including whether or not non-deformed projectile measurements are required. This report analyzes the forces two different soft-recovery methods impart on the projectiles collected. Method 1 utilized three polyethylene water barrels placed “end-to-end” horizontally, providing 2.6 meters (9 feet) of water to stop the projectile. Method 2 is a modification of the soft-recovery method utilized in “Soft-Recovery of Explosively Formed Penetrators” by Lambert and Pope. This method utilizes a series of …


Stochastic Simulation Of Entangled Polymeric Liquids In Fast Flows: Microstructure Modification, Joontaek Park, David W. Mead, Morton M. Denn Sep 2012

Stochastic Simulation Of Entangled Polymeric Liquids In Fast Flows: Microstructure Modification, Joontaek Park, David W. Mead, Morton M. Denn

Chemical and Biochemical Engineering Faculty Research & Creative Works

We have modified the full-chain stochastic tube (XDS) model developed by Xu et al. [J. Rheol. 50, 477-494 (2006)] to simulate the rheology of entangled melts and solutions of linear monodisperse polymers. The XDS model, which has a single adjustable parameter that is equivalent to the Rouse time, successfully describes steady and transient shear and normal stress data at low to moderate rates, but the results deviate systematically from experimental data at high rates. The algorithm for re-entanglement was revised, and a configuration- dependent friction coefficient (CDFC), as originally proposed by Giesekus, was incorporated to account for microstructural change of …