Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Engineering

Mechanism Underlying Effect Of Expansive Agent And Shrinkage Reducing Admixture On Mechanical Properties And Fiber-Matrix Bonding Of Fiber-Reinforced Mortar, Kamran Aghaee, Taihao Han, Aditya Kumar, Kamal Khayat Oct 2023

Mechanism Underlying Effect Of Expansive Agent And Shrinkage Reducing Admixture On Mechanical Properties And Fiber-Matrix Bonding Of Fiber-Reinforced Mortar, Kamran Aghaee, Taihao Han, Aditya Kumar, Kamal Khayat

Materials Science and Engineering Faculty Research & Creative Works

Expansive agent (EA) and shrinkage reducing admixture (SRA) are utilized to reduce shrinkage and risk of cracking in concrete. EA compensates shrinkage by initial expansion, and SRA reduces surface tension in the pore fluid. Although EA and SRA effectively reduce shrinkage, they can impair micro-structure of concrete at high contents. The shrinkage reduction effect of EA and SRA is well known; however, there is limited knowledge about their negative effect on microstructure and fiber matrix interfacial transition zone (ITZ). The current study explores the effect of using 10 % CaO-based EA, 2 % SRA, and their combination on mechanical, shrinkage, …


A High-Strength Precipitation Hardened Cobalt-Free High-Entropy Alloy, Matthew Luebbe, Jiaqi Duan, Fan Zhang, Jonathan Poplawsky, Hans Pommeranke, Maalavan Arivu, Andrew Hoffman, Mario F. Buchely, Haiming Wen Apr 2023

A High-Strength Precipitation Hardened Cobalt-Free High-Entropy Alloy, Matthew Luebbe, Jiaqi Duan, Fan Zhang, Jonathan Poplawsky, Hans Pommeranke, Maalavan Arivu, Andrew Hoffman, Mario F. Buchely, Haiming Wen

Materials Science and Engineering Faculty Research & Creative Works

Recent Studies on Precipitation-Hardened High-Entropy Alloys (HEAs) Demonstrate their High Strength and Thermal Stability, Making Them Promising Materials for High-Temperature Structural Applications Such as Nuclear Reactors. However, Many Existing HEAs Contain Cobalt (Co), Which is Unsuitable for Nuclear Applications Because of the Long-Term Activation Issue of Co. Co is Also Expensive and Considered a Critical Material for Other Applications. Therefore, It is Desired to Exclude Co from the Composition. a Co-Free (Fe0.3Ni0.3Mn0.3Cr0.1)88Ti4Al8 HEA Was Developed and Studied in This Work. in Contrast to Previous Co-Free HEAs, This Alloy is …


Synthesizing Ti–Ni Alloy Composite Coating On Ti–6al–4v Surface From Laser Surface Modification, Yitao Chen, Joseph William Newkirk, Frank W. Liou Feb 2023

Synthesizing Ti–Ni Alloy Composite Coating On Ti–6al–4v Surface From Laser Surface Modification, Yitao Chen, Joseph William Newkirk, Frank W. Liou

Materials Science and Engineering Faculty Research & Creative Works

In This Work, a Ni-Alloy Deloro-22 Was Laser-Deposited on a Ti–6Al–4V Bar Substrate with Multiple Sets of Laser Processing Parameters. the Purpose Was to Apply Laser Surface Modification to Synthesize Different Combinations of Ductile TiNi and Hard Ti2Ni Intermetallic Phases on the Surface of Ti–6Al–4V in Order to Obtain Adjustable Surface Properties. Scanning Electron Microscopy, Energy Dispersion Spectroscopy, and X-Ray Diffraction Were Applied to Reveal the Deposited Surface Microstructure and Phase. the Effect of Processing Parameters on the Resultant Compositions of TiNi and Ti2Ni Was Discussed. the Hardness of the Deposition Was Evaluated, and Comparisons with …


Boro/Carbothermal Reduction Co-Synthesis Of Dual-Phase High-Entropy Boride-Carbide Ceramics, Lun Feng, William Fahrenholtz, Gregory E. Hilmas, Stefano Curtarolo Jan 2023

Boro/Carbothermal Reduction Co-Synthesis Of Dual-Phase High-Entropy Boride-Carbide Ceramics, Lun Feng, William Fahrenholtz, Gregory E. Hilmas, Stefano Curtarolo

Materials Science and Engineering Faculty Research & Creative Works

Dense, dual-phase (Cr,Hf,Nb,Ta,Ti,Zr)B2-(Cr,Hf,Nb,Ta,Ti,Zr)C ceramics were synthesized by boro/carbothermal reduction of oxides and densified by spark plasma sintering. The high-entropy carbide content was about 14.5 wt%. Grain growth was suppressed by the pinning effect of the two-phase ceramic, which resulted in average grain sizes of 2.7 ± 1.3 µm for the high-entropy boride phase and 1.6 ± 0.7 µm for the high-entropy carbide phase. Vickers hardness values increased from 25.2 ± 1.1 GPa for an indentation load of 9.81 N to 38.9 ± 2.5 GPa for an indentation load of 0.49 N due to the indentation size effect. Boro/carbothermal …


Producing High Strength Aluminum Alloy By Combination Of Equal Channel Angular Pressing And Bake Hardening, Hamid Alihosseini, Mohsen Asle Zaeem, Kamran Dehghani, Ghader Faraji Feb 2015

Producing High Strength Aluminum Alloy By Combination Of Equal Channel Angular Pressing And Bake Hardening, Hamid Alihosseini, Mohsen Asle Zaeem, Kamran Dehghani, Ghader Faraji

Materials Science and Engineering Faculty Research & Creative Works

A combination of severe plastic deformation by equal channel angular pressing (ECAP) and bake hardening (BH) was used to produce high strength ultrafine-grained AA6061 aluminum alloy. 2, 4 and 8 passes of ECAP were performed, and the bake hardenability of samples was tested by 6% pre-straining followed by baking at 200 °C for 20 min. The microstructures obtained for various passes of ECAP were characterized by XRD, EBSD, and TEM techniques. The microstructures were refined from an average grain size of 20 µm to 212 nm after 8 passes of ECAP. Maximum bake hardenability of 110 MPa, and final yield …


An Investigation Of The Effect Of Direct Metal Deposition Parameters On The Characteristics Of The Deposited Layers, Tarak A. Amine, Joseph William Newkirk, Frank W. Liou Jul 2014

An Investigation Of The Effect Of Direct Metal Deposition Parameters On The Characteristics Of The Deposited Layers, Tarak A. Amine, Joseph William Newkirk, Frank W. Liou

Materials Science and Engineering Faculty Research & Creative Works

Multilayer direct laser deposition (DLD) is a fabrication process through which parts are fabricated by creating a molten pool into which metal powder is injected as particles. During fabrication, complex thermal activity occurs in different regions of the build; for example, newly deposited layers will reheat previously deposited layers. The objective of this study was to provide insight into the thermal activity that occurs during the DLD process. This work focused on the effect of the laser parameters of newly deposited layers on the microstructure and mechanical properties of the previously deposited layers in order to characterize these effects to …


Effect Of Zinc Galvanization On The Microstructure And Fracture Behavior Of Low And Medium Carbon Structural Steels, Ignatius C. Okafor, Ronald J. O'Malley, Kaushal R. Prayakarao, Heshmat A. Aglan Aug 2013

Effect Of Zinc Galvanization On The Microstructure And Fracture Behavior Of Low And Medium Carbon Structural Steels, Ignatius C. Okafor, Ronald J. O'Malley, Kaushal R. Prayakarao, Heshmat A. Aglan

Materials Science and Engineering Faculty Research & Creative Works

Microstructure and fracture behavior of ASTM 572 Grade 65 steels used for wind tower applications have been studied. Steels of two carbon level chemistries designed for this grade were used in the study. Fracture toughness of the steels was studied using 3-point bend test on samples coated with zinc and not coated with zinc. Lower carbon steel showed higher resistance to fracture than medium carbon steel after zinc galvanization. SEM study suggests that zinc and zinc bath additives that migrated to crack tips are responsible for the loss in ductility. The phenomenon of Liquid Metal Embrittlement (LME) is suggested to …


Progress In Effect Of Jominy End Quench On The Microstructure And Mechanical Properties Of Cast Aluminum Alloys, Qingcai Liu, C. Lu, Joseph William Newkirk Jan 2008

Progress In Effect Of Jominy End Quench On The Microstructure And Mechanical Properties Of Cast Aluminum Alloys, Qingcai Liu, C. Lu, Joseph William Newkirk

Materials Science and Engineering Faculty Research & Creative Works

In this review, the current knowledge related to the relationship between the heat treatment process and the microstructure and mechanical properties of A356 aluminum alloys are summarized. The review also examines the use of the Jominy end quench (JEQ) specimen and its application to the examination of the effects of quench rate and subsequent processing. Using the design of experimental methods combined with the Jominy end quench technique, desired changes in microstructure and mechanical properties of alloys can be obtained. So, the experimental technique of the Jominy end quench was concerned in this work.


High Energy Density Dielectrics For Symmetric Blumleins, Wayne Huebner, Shi C. Zhang Jul 2000

High Energy Density Dielectrics For Symmetric Blumleins, Wayne Huebner, Shi C. Zhang

Materials Science and Engineering Faculty Research & Creative Works

Multilayer, tape cast ceramics are being developed for use in large area, high voltage devices in order to achieve high specific energy densities (>106 J/m3) and physical size reduction. In particular, symmetric Blumleins are desired with the following properties:

  • High voltage hold off (≥ 300 kV)
  • High, nondispersive permittivity: ≈100 to 900
  • Ability to be fabricated into various shapes and sizes
  • Surface flashover inhibition at the edge
  • Ability to be triggered by surface flashover switching

The compositions being pursued are based on pure BaTiO3 dielectrics. Our approach is to add glass phase additions which result …


High Breakdown Strength, Multilayer Ceramics For Compact Pulsed Power Applications, Wayne Huebner, Brian L. Gilmore, Shi C. Zhang, Mike L. Krogh, B. C. Schultz, R. C. Pate, L. F. Rinehart, J. M. Lundstrom Jan 1999

High Breakdown Strength, Multilayer Ceramics For Compact Pulsed Power Applications, Wayne Huebner, Brian L. Gilmore, Shi C. Zhang, Mike L. Krogh, B. C. Schultz, R. C. Pate, L. F. Rinehart, J. M. Lundstrom

Materials Science and Engineering Faculty Research & Creative Works

Advanced ceramics are being developed for use in large area, high voltage devices in order to achieve high specific energy densities (greater than 10^6/ J/m^3/) and physical size reduction. Initial materials based on slip cast TiO2 exhibited a high bulk breakdown strength (BDS greater than 300 kV/cm) and high permittivity with low dispersion (epsilon approximately equal to 100). However, strong area and thickness dependencies were noted. To increase the BDS, multilayer dielectric compositions are being developed based on glass/TiO2 composites. The addition of glass increases the density (approximately equal to 99.8% theoretical), forms a continuous grain boundary phase, and also …


Mixed Electron Emission From Doped Pb(Zr,Ti)O₃ Ceramics: Microstructural Aspects, Weiming Zhang, Wayne Huebner Jun 1998

Mixed Electron Emission From Doped Pb(Zr,Ti)O₃ Ceramics: Microstructural Aspects, Weiming Zhang, Wayne Huebner

Materials Science and Engineering Faculty Research & Creative Works

A mixed type electron emission, i.e., simultaneous ferroelectric and plasma emission, was observed with a negative driving pulse applied to doped Pb(Zr,Ti)O3 ceramics in the absence of any external potential on the electron collector. During these emission studies, significant microstructural changes on the emission surface were observed, and corresponded to the different emission modes. Erosion craters at the edge of the electrode and small particles near these craters reflected the formation of a dense plasma there. Comparatively, cavities, i.e., grain pullouts, accumulated on the bare ferroelectric surface, the frequency of which depended upon its distance from the grid. This …


Evaluation Of Yba₂Cu₃O₇₋ₓ Bulk Superconductors For High Field Magnet Applications, Michael Strasik, Fatih Dogan, J. Liu, Mehmet Sarikaya, K. Y. Blohowiak, D. F. Garrigus, T. S. Luhman, Kevin E. Mccrary, I. A. Aksay, W. B. Hicks Jan 1993

Evaluation Of Yba₂Cu₃O₇₋ₓ Bulk Superconductors For High Field Magnet Applications, Michael Strasik, Fatih Dogan, J. Liu, Mehmet Sarikaya, K. Y. Blohowiak, D. F. Garrigus, T. S. Luhman, Kevin E. Mccrary, I. A. Aksay, W. B. Hicks

Materials Science and Engineering Faculty Research & Creative Works

Processing of YBCO single crystals was carried out by solidification of semi-liquid YBCO composition using a seeding technique. Microstructural characterization of the pinning centers was investigated by transmission electron microscopy. Characterization of single crystals was carried out, relating grain size and shape to the corresponding flux profiles. Current densities were calculated based on measured trapped fields. Once circulating currents were established, flux pumping and quenching experiments were conducted. These large single crystals will be incorporated into electromagnetic forming devices for use in the military and commercial aircraft manufacturing and service industries.