Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Florida International University

Department of Mechanical and Materials Engineering

Series

2019

Articles 1 - 4 of 4

Full-Text Articles in Engineering

High-Power Biofuel Cells Based On Threedimensional Reduced Graphene Oxide/ Carbon Nanotube Micro-Arrays, Yin Song, Chunlei Wang Sep 2019

High-Power Biofuel Cells Based On Threedimensional Reduced Graphene Oxide/ Carbon Nanotube Micro-Arrays, Yin Song, Chunlei Wang

Department of Mechanical and Materials Engineering

Miniaturized enzymatic biofuel cells (EBFCs) with high cell performance are promising candidates for powering next-generation implantable medical devices. Here, we report a closed-loop theoretical and experimental study on a micro EBFC system based on three-dimensional (3D) carbon micropillar arrays coated with reduced graphene oxide (rGO), carbon nanotubes (CNTs), and a biocatalyst composite. The fabrication process of this system combines the top–down carbon microelectromechanical systems (C-MEMS) technique to fabricate the 3D micropillar array platform and bottom–up electrophoretic deposition (EPD) to deposit the reduced rGO/CNTs/enzyme onto the electrode surface. The Michaelis–Menten constant KM of 2.1 mM for glucose oxidase (GOx) on the …


Design Of High Temperature Ti–Al–Cr–V Alloys For Maximum Thermodynamic Stability Using Self-Organizing Maps, Rajesh Jha, George S. Dulikravich May 2019

Design Of High Temperature Ti–Al–Cr–V Alloys For Maximum Thermodynamic Stability Using Self-Organizing Maps, Rajesh Jha, George S. Dulikravich

Department of Mechanical and Materials Engineering

Data generated for the Ti–Al–Cr–V system of metallic alloys from our previous publication, where the composition of 102 alloys were computationally Pareto optimized with the objective of simultaneously maximizing the Young’s modulus and minimizing density for a range of temperatures, was the starting point of the current research, where compositions at different temperatures of these alloys were analyzed for phase stability in order to generate new data for compositions and volume fractions of stable phases at various temperatures. This resulted in a large dataset where a lot of data were still missing as all the phases are not stable at …


Design Of High Temperature Ti–Al–Cr–V Alloys For Maximum Thermodynamic Stability Using Self-Organizing Maps, Rajesh Jha, George S. Dulikravich May 2019

Design Of High Temperature Ti–Al–Cr–V Alloys For Maximum Thermodynamic Stability Using Self-Organizing Maps, Rajesh Jha, George S. Dulikravich

Department of Mechanical and Materials Engineering

Data generated for the Ti–Al–Cr–V system of metallic alloys from our previous publication, where the composition of 102 alloys were computationally Pareto optimized with the objective of simultaneously maximizing the Young’s modulus and minimizing density for a range of temperatures, was the starting point of the current research, where compositions at different temperatures of these alloys were analyzed for phase stability in order to generate new data for compositions and volume fractions of stable phases at various temperatures. This resulted in a large dataset where a lot of data were still missing as all the phases are not stable at …


Quantification Of Thermal Oxidation In Metallic Glass Powder Using Ultra-Small Angle X-Ray Scattering, Tanaji Paul, Linqi Zhang, Sourabh Biswas, Archana Loganathan, Matthew G. Frith, Jan Ilavsky, Ivan Kuzmenko, Jim Puckette, A. Kaan Kalkan, Arvind Agarwal, Sandip P. Harimkar May 2019

Quantification Of Thermal Oxidation In Metallic Glass Powder Using Ultra-Small Angle X-Ray Scattering, Tanaji Paul, Linqi Zhang, Sourabh Biswas, Archana Loganathan, Matthew G. Frith, Jan Ilavsky, Ivan Kuzmenko, Jim Puckette, A. Kaan Kalkan, Arvind Agarwal, Sandip P. Harimkar

Department of Mechanical and Materials Engineering

In this paper, the composition, structure, morphology and kinetics of evolution during isothermal oxidation of Fe 48Cr 15Mo 14Y 2C 15B 6 metallic glass powder in the supercooled region are investigated by an integrated ex-situ and in-situ characterization and modelling approach. Raman and X-ray diffraction spectra established that oxidation yielded a hierarchical structure across decreasing length scales. At larger scale, Fe 2O 3 grows as a uniform shell over the powder core. This shell, at smaller scale, consists of multiple grains. Ultra-small angle X-ray scattering intensity acquired during isothermal oxidation of the powder over a wide Q-range delineated direct quantification …