Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Class-Incremental Learning For Wireless Device Identification In Iot, Yongxin Liu, Jian Wang, Jianqiang Li, Shuteng Niu, Houbing Song May 2021

Class-Incremental Learning For Wireless Device Identification In Iot, Yongxin Liu, Jian Wang, Jianqiang Li, Shuteng Niu, Houbing Song

Publications

Deep Learning (DL) has been utilized pervasively in the Internet of Things (IoT). One typical application of DL in IoT is device identification from wireless signals, namely Noncryptographic Device Identification (NDI). However, learning components in NDI systems have to evolve to adapt to operational variations, such a paradigm is termed as Incremental Learning (IL). Various IL algorithms have been proposed and many of them require dedicated space to store the increasing amount of historical data, and therefore, they are not suitable for IoT or mobile applications. However, conventional IL schemes can not provide satisfying performance when historical data are not …


Zero-Bias Deep Learning Enabled Quick And Reliable Abnormality Detection In Iot, Yongxin Liu, Jian Wang, Jianqiang Li, Shuteng Niu, Houbing Song Apr 2021

Zero-Bias Deep Learning Enabled Quick And Reliable Abnormality Detection In Iot, Yongxin Liu, Jian Wang, Jianqiang Li, Shuteng Niu, Houbing Song

Publications

Abnormality detection is essential to the performance of safety-critical and latency-constrained systems. However, as systems are becoming increasingly complicated with a large quantity of heterogeneous data, conventional statistical change point detection methods are becoming less effective and efficient. Although Deep Learning (DL) and Deep Neural Networks (DNNs) are increasingly employed to handle heterogeneous data, they still lack theoretic assurable performance and explainability. This paper integrates zero-bias DNN and Quickest Event Detection algorithms to provide a holistic framework for quick and reliable detection of both abnormalities and time-dependent abnormal events in Internet of Things (IoT).We first use the zero bias dense …


Zero-Bias Deep Learning For Accurate Identification Of Internet Of Things (Iot) Devices, Yongxin Liu, Houbing Song, Thomas Yang, Jian Wang, Jianqiang Li, Shuteng Niu, Zhong Ming Aug 2020

Zero-Bias Deep Learning For Accurate Identification Of Internet Of Things (Iot) Devices, Yongxin Liu, Houbing Song, Thomas Yang, Jian Wang, Jianqiang Li, Shuteng Niu, Zhong Ming

Publications

The Internet of Things (IoT) provides applications and services that would otherwise not be possible. However, the open nature of IoT makes it vulnerable to cybersecurity threats. Especially, identity spoofing attacks, where an adversary passively listens to the existing radio communications and then mimic the identity of legitimate devices to conduct malicious activities. Existing solutions employ cryptographic signatures to verify the trustworthiness of received information. In prevalent IoT, secret keys for cryptography can potentially be disclosed and disable the verification mechanism. Noncryptographic device verification is needed to ensure trustworthy IoT. In this article, we propose an enhanced deep learning framework …


Adaboost‑Based Security Level Classifcation Of Mobile Intelligent Terminals, Feng Wang, Houbing Song, Dingde Jiang, Hong Wen Jul 2019

Adaboost‑Based Security Level Classifcation Of Mobile Intelligent Terminals, Feng Wang, Houbing Song, Dingde Jiang, Hong Wen

Publications

With the rapid development of Internet of Things, massive mobile intelligent terminals are ready to access edge servers for real-time data calculation and interaction. However, the risk of private data leakage follows simultaneously. As the administrator of all intelligent terminals in a region, the edge server needs to clarify the ability of the managed intelligent terminals to defend against malicious attacks. Therefore, the security level classification for mobile intelligent terminals before accessing the network is indispensable. In this paper, we firstly propose a safety assessment method to detect the weakness of mobile intelligent terminals. Secondly, we match the evaluation results …