Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Edith Cowan University

Research outputs 2022 to 2026

2024

Adsorption

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Adsorption-Type Aluminium-Based Direct Lithium Extraction: The Effect Of Heat, Salinity And Lithium Content, Yasaman Boroumand, Amir Razmjou May 2024

Adsorption-Type Aluminium-Based Direct Lithium Extraction: The Effect Of Heat, Salinity And Lithium Content, Yasaman Boroumand, Amir Razmjou

Research outputs 2022 to 2026

Conventional lithium production through solar evaporation is considered a time-consuming procedure, taking a substantial 12 to 18 months with significant environmental impacts such as aquifer depletion and damaging the basin's complex hydrological system. Direct Lithium Extraction (DLE) has emerged as a promising alternative for lithium extraction from brines, offering reduced environmental impact. Although adsorption-type DLE with aluminium-based adsorbents is the sole commercial technology of DLE, a debate persists concerning its Technology Readiness Level (TRL), which challenges the prevailing notion that adsorption-type DLE undeniably reaches a TRL of 9. Within this narrative, we propose that adsorption is capable of attaining its …


Identification Of Early Opportunities For Simultaneous H2 Separation And Co2 Storage Using Depleted Coal Seams, Masoud Aslannezhad, Mohammad Sayyafzadeh, Stefan Iglauer, Alireza Keshavarz Feb 2024

Identification Of Early Opportunities For Simultaneous H2 Separation And Co2 Storage Using Depleted Coal Seams, Masoud Aslannezhad, Mohammad Sayyafzadeh, Stefan Iglauer, Alireza Keshavarz

Research outputs 2022 to 2026

Hydrogen (H2) production by steam methane reforming (SMR) is an economically viable technique on a commercial scale. However, this process produces large amounts of carbon dioxide (CO2), which eventually negates the benefits of employing H2 as an industrial input and clean energy carrier. This issue has led to increasing interest in capturing CO2 emissions from SMR to produce H2. This study proposes and investigates the use of coalbed methane (CBM) resources for separating the mixture of H2 and CO2 gases. The competitive adsorption mechanism in CBM not only can separate the H2 gas from the mixture but also results into …