Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Edith Cowan University

Research outputs 2014 to 2021

Series

Nanophotonics

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Properties Of Exchange Coupled All-Garnet Magneto-Optic Thin Film Multilayer Structures, Mohammed Nur-E-Alam, Mikhail Vasilev, Viacheslav A. Kotov, Dmitry Balabanov, Ilya Akimov, Kamal Alameh Jan 2015

Properties Of Exchange Coupled All-Garnet Magneto-Optic Thin Film Multilayer Structures, Mohammed Nur-E-Alam, Mikhail Vasilev, Viacheslav A. Kotov, Dmitry Balabanov, Ilya Akimov, Kamal Alameh

Research outputs 2014 to 2021

The effects of exchange coupling on magnetic switching properties of all-garnet multilayer thin film structures are investigated. All-garnet structures are fabricated by sandwiching a magneto-soft material of composition type Bi1.8Lu1.2Fe3.6Al1.4O12 or Bi3Fe5O12:Dy2O3 in between two magneto-hard garnet material layers of composition type Bi2Dy1Fe4Ga1O12 or Bi2Dy1Fe4Ga1O12:Bi12O3. The fabricated RF magnetron sputtered exchange-coupled all-garnet multilayers demonstrate a very attractive combination of …


Recent Developments In Magneto-Optic Garnet-Type Thin-Film Materials Synthesis, Mohammad Nur-E-Alam, Mikhail Vasiliev, Viacheslav Kotov, Kamal Alameh Jan 2014

Recent Developments In Magneto-Optic Garnet-Type Thin-Film Materials Synthesis, Mohammad Nur-E-Alam, Mikhail Vasiliev, Viacheslav Kotov, Kamal Alameh

Research outputs 2014 to 2021

Magneto-optic (MO) garnets are used in a range of applications in nanophotonics, integrated optics, communications and imaging. Bi-substituted iron garnets of different compositions are the most useful class of materials in applied magnetooptics due to their excellent MO properties (large Faraday effect) and record-high MO figure of merit among all semitransparent dielectrics. It is highly desirable to synthesise garnets which possess simultaneously a high MO figure of merit and large uniaxial magnetic anisotropy. However, the simultaneous optimization of several material properties and parameters can be difficult in single-layer garnet thin films, and it is also challenging to prepare films with …