Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 75

Full-Text Articles in Engineering

Rock Structural Changes Monitored By Fibre Bragg Grating Sensors And Nuclear Magnetic Resonance During Static And Dynamic Carbonated Brine Core Flooding Experiments, Bruno Da Silva Falcão, Lionel Esteban, Ausama Giwelli, Ahmed Al-Yaseri, Alireza Keshavarz, Jeremie Dautriat, Stephanie Vialle, Stefan Iglauer Jul 2024

Rock Structural Changes Monitored By Fibre Bragg Grating Sensors And Nuclear Magnetic Resonance During Static And Dynamic Carbonated Brine Core Flooding Experiments, Bruno Da Silva Falcão, Lionel Esteban, Ausama Giwelli, Ahmed Al-Yaseri, Alireza Keshavarz, Jeremie Dautriat, Stephanie Vialle, Stefan Iglauer

Research outputs 2022 to 2026

One proposed solution to reduce greenhouse gas emissions is the capture and storage of carbon dioxide (CCS) in geological formations such as depleted oil and gas reservoirs. Injected carbon dioxide (CO2) forms carbonic acid once dissolved in the formation water, which can lead to dissolution of certain types of rock minerals. This may weaken rock geomechanical properties that can jeopardize the safety of long-term storage. In this work, the use of Fibre Bragg Grating (FBG) sensors associated with Nuclear Magnetic Resonance (NMR) was investigated to measure the change in rock strain during core flooding experiments. Optical fibres were glued onto …


Hydrogen From Food Waste: Energy Potential, Economic Feasibility, And Environmental Impact For Sustainable Valorization, Md Sanowar Hossain, Fairuz Wasima, Md Sharul I. K. Shawon, Barun K. Das, Pronob Das, Sanjay Paul Jun 2024

Hydrogen From Food Waste: Energy Potential, Economic Feasibility, And Environmental Impact For Sustainable Valorization, Md Sanowar Hossain, Fairuz Wasima, Md Sharul I. K. Shawon, Barun K. Das, Pronob Das, Sanjay Paul

Research outputs 2022 to 2026

Globally, inefficient management of municipal solid waste, composed primarily of food waste poses concern for human and environmental well-being. Food waste can be converted into hydrogen gas, which can be utilized to generate power without emitting any harmful pollutants. This solution would also help with the issue of disposing of food waste. The conversion of food waste into hydrogen is a practical energy source with potential financial benefits. This study explores the transformative potential of converting food waste into renewable energy through hydrogen production, focusing on Bangladesh from 2023 to 2042. Notably, the study forecasts a surge in food waste …


Understanding The Impact Of Microplastic Contamination On Soil Quality And Eco-Toxicological Risks In Horticulture: A Comprehensive Review, N. P. Gayathri, Geena Prasad, Vaishna Prabhakaran, Vishnu Priya Jun 2024

Understanding The Impact Of Microplastic Contamination On Soil Quality And Eco-Toxicological Risks In Horticulture: A Comprehensive Review, N. P. Gayathri, Geena Prasad, Vaishna Prabhakaran, Vishnu Priya

Research outputs 2022 to 2026

The horticulture sector, essential for global food production, confronts significant challenges with prevalent pollutants, mainly microplastics. The presence of microplastics in the food chain has induced physiological stress and a multifactorial food safety concern. The complexity of the problem, arising from intricate interactions among microplastics, organisms, and ecosystems, poses a substantial challenge to food safety, necessitating an immediate strategic perspective due to the associated risks to human health and eco-toxicology. Significant knowledge gaps persist regarding their impact on terrestrial ecosystems, especially in horticulture. This study addresses the urgent need to comprehend the implications of microplastics on soil health, eco-toxicological risks, …


Advective And Diffusive Gas Phase Transport In Vadose Zones: Importance For Defining Vapour Risks And Natural Source Zone Depletion Of Petroleum Hydrocarbons, Kaveh Sookhak Lari, Greg B. Davis, John L. Rayner, Trevor P. Bastow May 2024

Advective And Diffusive Gas Phase Transport In Vadose Zones: Importance For Defining Vapour Risks And Natural Source Zone Depletion Of Petroleum Hydrocarbons, Kaveh Sookhak Lari, Greg B. Davis, John L. Rayner, Trevor P. Bastow

Research outputs 2022 to 2026

Quantifying the interlinked behaviour of the soil microbiome, fluid flow, multi-component transport and partitioning, and biodegradation is key to characterising vapour risks and natural source zone depletion (NSZD) of light non-aqueous phase liquid (LNAPL) petroleum hydrocarbons. Critical to vapour transport and NSZD is transport of gases through the vadose zone (oxygen from the atmosphere, volatile organic compounds (VOCs), methane and carbon dioxide from the zone of LNAPL biodegradation). Volatilisation of VOCs from LNAPL, aerobic biodegradation, methanogenesis and heat production all generate gas pressure changes that may lead to enhanced gas fluxes apart from diffusion. Despite the importance of the gaseous …


Enhanced Phosphogypsum Thermal Reduction By Carbon In Presence Of Sodium Chloride At High Temperature, Li Chao, An Xuebin, Jing Hu, Yixiao Wang, Shizhao Wang, Yunshan Wang, Gang Yang, Yong Sun May 2024

Enhanced Phosphogypsum Thermal Reduction By Carbon In Presence Of Sodium Chloride At High Temperature, Li Chao, An Xuebin, Jing Hu, Yixiao Wang, Shizhao Wang, Yunshan Wang, Gang Yang, Yong Sun

Research outputs 2022 to 2026

This paper reports an enhanced approach of thermal reduction of phosphogypsum (PG) in the presence of sodium chloride (NaCl) in its molten phase. The thermodynamic together with in-situ thermogravimetric-Fourier transform infrared spectroscopy (TG-FTIR) result indicates the yield of CaS (solid) at the investigated temperature range (800–850 °C). Addition of NaCl not only appreciably reduces the activation energy of this reaction (800–850 °C) on average from 315 to 175 (kJ·mol−1) materially, but also significantly improve the conversion from CaSO4 to CaS. Additionally, the NaCl based waste salt (NaCl-WS) containing organic compounds (0.21 wt%) was found to produce similar results when compared …


Biomimetic And Bio-Derived Composite Phase Change Materials For Thermal Energy Storage Applications: A Thorough Analysis And Future Research Directions, Md Shahriar Mohtasim, Barun K. Das Apr 2024

Biomimetic And Bio-Derived Composite Phase Change Materials For Thermal Energy Storage Applications: A Thorough Analysis And Future Research Directions, Md Shahriar Mohtasim, Barun K. Das

Research outputs 2022 to 2026

Phase change heat storage has gained a lot of interest lately due to its high energy storage density. However, during the phase shift process, Phase Change Materials (PCMs) experience issues such as low thermal conductivity, stability, leaking, and low energy-storing capacity. Materials that mimic or derive from nature can effectively offset the shortcomings attributed. This work presents a methodical overview of the synthesis, thermo-physical properties, comparison and Thermal Energy Storage (TES) applications of bio-derived and biomimetic composite PCMs (BD/BM-CPCMs). Several studies have observed increase in thermal conductivity up to 950–1250 % for BD/BM-CPCMs, as well as great thermal stability with …


Microplastics Fouling Mitigation In Forward Osmosis Membranes By The Molecular Assembly Of Sulfobetaine Zwitterion, Javad Farahbakhsh, Mitra Golgoli, Mehdi Khiadani, Amir Razmjou, Masoumeh Zargar Apr 2024

Microplastics Fouling Mitigation In Forward Osmosis Membranes By The Molecular Assembly Of Sulfobetaine Zwitterion, Javad Farahbakhsh, Mitra Golgoli, Mehdi Khiadani, Amir Razmjou, Masoumeh Zargar

Research outputs 2022 to 2026

Forward osmosis (FO) membranes have potential for the efficient water and wastewater treatment applications. However, their development has faced significant challenges due to their fouling propensity. In this study, FO membranes modified with sulfobetaine zwitterions (i.e., [2-(Methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide) were fabricated and used for the first time to address microplastic (MP) fouling issue. Water flux, reverse salt flux (RSF), fouling, and flux recovery were evaluated for the membranes loaded with different quantities of the zwitterions ranging from 0.25 % to 2 %. The developed membranes were tested over 49 h with feed solutions containing polyethylene MPs and bovine serum albumin …


Performance Enhancement Of A Solar-Driven Dcmd System Using An Air-Cooled Condenser And Oil: Experimental And Machine Learning Investigations, Pooria Behnam, Abdellah Shafieian, Masoumeh Zargar, Mehdi Khiadani Apr 2024

Performance Enhancement Of A Solar-Driven Dcmd System Using An Air-Cooled Condenser And Oil: Experimental And Machine Learning Investigations, Pooria Behnam, Abdellah Shafieian, Masoumeh Zargar, Mehdi Khiadani

Research outputs 2022 to 2026

Solar-driven direct contact membrane distillation systems (DCMD) are disadvantaged by low freshwater productivity and low gain-output-ratio (GOR). Consequently, this study aims to achieve two primary objectives: i) improving the solar DCMD performance, and ii) harnessing machine learning models for precise and straightforward modeling of the solar DCMD system. To achieve these goals, a novel solar DCMD system powered with oil-filled heat pipe evacuated tube collectors (HP-ETCs) and equipped with an air-cooled condenser was used for the first time. The system was evaluated under eight different scenarios covering both its energy and economic performances. The performance prediction of three different machine …


Adsorbents From Rice Husk And Shrimp Shell For Effective Removal Of Heavy Metals And Reactive Dyes In Water, Md Ibrahim H. Mondal, Shovra C. Chakraborty, Md Saifur Rahman, Shaik M. H. Marjuban, Firoz Ahmed, John L. Zhou, Mohammad B. Ahmed, Masoumeh Zargar Apr 2024

Adsorbents From Rice Husk And Shrimp Shell For Effective Removal Of Heavy Metals And Reactive Dyes In Water, Md Ibrahim H. Mondal, Shovra C. Chakraborty, Md Saifur Rahman, Shaik M. H. Marjuban, Firoz Ahmed, John L. Zhou, Mohammad B. Ahmed, Masoumeh Zargar

Research outputs 2022 to 2026

Widespread contamination by heavy metals (HMs) and dyes poses a major health risk to people and ecosystems requiring effective treatment. In this work, rice husk (RH) and shrimp shells were extracted to obtain amorphous silica and chitosan, respectively, which were utilized to produce nano-chitosan-coated silica (NCCS). To ensure the stability of the nanoparticles, silica was freeze-dried after being coated with nano-chitosan. Functional groups (–NH2, –OH, P]O) from chitosan nanoparticles (CNPs) were introduced to the surface of silica during this process. Dyes such as brilliant green (BG), methylene blue (MB) and reactive brown (RB) as well as HMs (Cr6+, Pb2+, Cd2+, …


Parametric Analysis Of Co2 Hydrogenation Via Fischer-Tropsch Synthesis: A Review Based On Machine Learning For Quantitative Assessment, Jing Hu, Yixao Wang, Xiyue Zhang, Yunshan Wang, Gang Yang, Lufang Shi, Yong Sun Mar 2024

Parametric Analysis Of Co2 Hydrogenation Via Fischer-Tropsch Synthesis: A Review Based On Machine Learning For Quantitative Assessment, Jing Hu, Yixao Wang, Xiyue Zhang, Yunshan Wang, Gang Yang, Lufang Shi, Yong Sun

Research outputs 2022 to 2026

This review focuses on the parametric impacts upon conversion and selectivity during CO2 hydrogenation via Fischer-Tropsch (FT) synthesis using iron-based catalyst to provide quantitative evaluation. Using all collected data from reported literatures as training dataset via artificial neural networks (ANNs) in TensorFlow, three categorized parameters (namely: operational, catalyst informatic and mass transfer) were deployed to assess their impacts upon conversions (CO2) and selectivity. The lump kinetic power expressions among literature reports were compared, and the best fit model is the one that was proposed by this work without arbitrarily assuming power values of individual partial pressure (CO and H2). More …


Wave Overtopping Layer Thickness On The Crest Of Rubble Mound Seawalls, Ali Koosheh, Amir Etemad-Shahidi, Nick Cartwright, Rodger Tomlinson, Marcel R. A. Van Gent Mar 2024

Wave Overtopping Layer Thickness On The Crest Of Rubble Mound Seawalls, Ali Koosheh, Amir Etemad-Shahidi, Nick Cartwright, Rodger Tomlinson, Marcel R. A. Van Gent

Research outputs 2022 to 2026

During storms, ensuring the protection of people, vehicles and infrastructure on the crest of coastal structures from wave overtopping hazards is crucial. The thickness of the wave overtopping layer is a key variable used for assessing safety and maintaining a secure design. Traditionally, this parameter is associated with the height difference between the fictitious wave run-up level exceeded by 2% of waves and the crest freeboard of coastal structures. This study aims to investigate the wave overtopping layer thickness on the crest of rubble mound seawalls. To achieve this, a series of 125 small-scale 2D physical model tests were conducted …


Lateral Load Response Of Semi-Interlocking Mortarless Masonry-Infilled Frames, Sonam Dorji, Hossein Derakhshan, David P. Thambiratnam, Alireza Mohyeddin Mar 2024

Lateral Load Response Of Semi-Interlocking Mortarless Masonry-Infilled Frames, Sonam Dorji, Hossein Derakhshan, David P. Thambiratnam, Alireza Mohyeddin

Research outputs 2022 to 2026

Structural frames infilled with masonry material called masonry-infilled frames (MIFs) are common types of constructions around the world. These structures generally have mortared masonry as infill material which made the buildings stiff during past earthquakes and generated additional torsional forces. With a view to improve the seismic performance of MIFs this paper presents the results of a numerical simulation study on the behaviour of previously-tested MIFs with semi-interlocking masonry (SIM) material. In a simplified micro-modelling approach, the concrete and masonry materials are simulated using Concrete Damaged Plasticity technique and the joints are considered as zero-thickness cohesive interfaces modelled using traction-separation …


An Innovative Fracture Plugging Evaluation Method For Drill-In Fluid Loss Control And Formation Damage Prevention In Deep Fractured Tight Reservoirs, Chengyuan Xu, Lei Liu, Yang Yang, Yili Kang, Zhenjiang You Feb 2024

An Innovative Fracture Plugging Evaluation Method For Drill-In Fluid Loss Control And Formation Damage Prevention In Deep Fractured Tight Reservoirs, Chengyuan Xu, Lei Liu, Yang Yang, Yili Kang, Zhenjiang You

Research outputs 2022 to 2026

Lost circulation, resulting from the undesired loss of drilling fluid into formation fractures, stands as a significant technical obstacle in the exploration and production of oil, gas, and geothermal reservoirs. Effective mitigation of this challenge requires the development and application of robust experimental evaluation methods to assess the effectiveness of fracture plugging. The traditional approach to fracture plugging evaluation relies on a uniform evaluation index and experimental parameters for various lost circulation types. Unfortunately, this practice frequently results in inconsistent performance of loss control formulas during laboratory experiments and field tests. To address this issue, this paper introduces an innovative …


Advanced Shape Memory Alloy Fibers Designed To Enhance Crack Closure And Re-Centring Performance In Cement-Based Composites, Ayoub Dehghani, Farhad Aslani Feb 2024

Advanced Shape Memory Alloy Fibers Designed To Enhance Crack Closure And Re-Centring Performance In Cement-Based Composites, Ayoub Dehghani, Farhad Aslani

Research outputs 2022 to 2026

Crack-closing and re-centring attributes were observed in cementitious composites utilising segmented pseudoelastic shape memory alloy fibres (S-PSMAFs) developed in this study. S-PSMAFs, produced via laboratory deep drawing, displayed notable strain recovery capacity during detwinning and martensite phases in direct cyclic tensile tests. Cementitious composites incorporating S-PSMAFs at 0.5%, 0.75%, and 1.0% dosages underwent testing in static and cyclic flexure using both unnotched and notched beams. Results were compared with steel fibre (SF) reinforced specimens. Digital image correlation (DIC) provided full-field strain maps and crack propagation data. The cyclic testing allowed assessment of crack-closing and re-centring behaviour at varying deflections post-cracking …


Measurements Of The Effective Stress Coefficient For Elastic Moduli Of Sandstone In Quasi-Static Regime Using Semiconductor Strain Gauges, Vassily Mikhaltsevitch, Maxim Lebedev Feb 2024

Measurements Of The Effective Stress Coefficient For Elastic Moduli Of Sandstone In Quasi-Static Regime Using Semiconductor Strain Gauges, Vassily Mikhaltsevitch, Maxim Lebedev

Research outputs 2022 to 2026

Numerous experimental and theoretical studies undertaken to determine the effective stress coefficient for seismic velocities in rocks stem from the importance of this geomechanical parameter both for monitoring changes in rock saturation and pore pressure distribution in connection with reservoir production, and for overpressure prediction in reservoirs and formations from seismic data. The present work pursues a task to determine, in the framework of a low-frequency laboratory study, the dependence of the elastic moduli of n-decane-saturated sandstone on the relationship between pore and confining pressures. The study was conducted on a sandstone sample with high quartz and notable clay content …


Identification Of Early Opportunities For Simultaneous H2 Separation And Co2 Storage Using Depleted Coal Seams, Masoud Aslannezhad, Mohammad Sayyafzadeh, Stefan Iglauer, Alireza Keshavarz Feb 2024

Identification Of Early Opportunities For Simultaneous H2 Separation And Co2 Storage Using Depleted Coal Seams, Masoud Aslannezhad, Mohammad Sayyafzadeh, Stefan Iglauer, Alireza Keshavarz

Research outputs 2022 to 2026

Hydrogen (H2) production by steam methane reforming (SMR) is an economically viable technique on a commercial scale. However, this process produces large amounts of carbon dioxide (CO2), which eventually negates the benefits of employing H2 as an industrial input and clean energy carrier. This issue has led to increasing interest in capturing CO2 emissions from SMR to produce H2. This study proposes and investigates the use of coalbed methane (CBM) resources for separating the mixture of H2 and CO2 gases. The competitive adsorption mechanism in CBM not only can separate the H2 gas from the mixture but also results into …


On Quantifying Global Carbon Emission From Oil Contaminated Lands Over Centuries, Kaveh Sookhak Lari, Greg B. Davis, Trevor Bastow, John L. Rayner Jan 2024

On Quantifying Global Carbon Emission From Oil Contaminated Lands Over Centuries, Kaveh Sookhak Lari, Greg B. Davis, Trevor Bastow, John L. Rayner

Research outputs 2022 to 2026

Petroleum releases into the subsurface contribute to global soil carbon emissions. Quantifying releases and changes in releases of carbon from soils over the lifetime of a spill is complex. Natural source zone depletion (NSZD) of light non-aqueous phase liquids (LNAPLs) embodies all key mechanisms for transformation to carbon gases and their release from soils including partitioning, transport and degradation of petroleum components. Quantification of the interconnected behaviours of the soil microbiome, fluid flow, multi-component transport, partitioning, and biodegradation is crucial for understanding NSZD. Volatilization from LNAPL, aerobic biodegradation, methanogenesis, and heat production all lead to release of greenhouse gases to …


Recent Advances In Surface Tailoring Of Thin Film Forward Osmosis Membranes: A Review, Javad Farahbakhsh, Mitra Golgoli, Mehdi Khiadani, Mohadeseh Najafi, Wafa Suwaileh, Amir Razmjou, Masoumeh Zargar Jan 2024

Recent Advances In Surface Tailoring Of Thin Film Forward Osmosis Membranes: A Review, Javad Farahbakhsh, Mitra Golgoli, Mehdi Khiadani, Mohadeseh Najafi, Wafa Suwaileh, Amir Razmjou, Masoumeh Zargar

Research outputs 2022 to 2026

The recent advancements in fabricating forward osmosis (FO) membranes have shown promising results in desalination and water treatment. Different methods have been applied to improve FO performance, such as using mixed or new draw solutions, enhancing the recovery of draw solutions, membrane modification, and developing FO-hybrid systems. However, reliable methods to address the current issues, including reverse salt flux, fouling, and antibacterial activities, are still in progress. In recent decades, surface modification has been applied to different membrane processes, including FO membranes. Introducing nanochannels, bioparticles, new monomers, and hydrophilic-based materials to the surface layer of FO membranes has significantly impacted …


Energy Management And Sizing Of A Stand-Alone Hybrid Renewable Energy System For Community Electricity, Fresh Water, And Cooking Gas Demands Of A Remote Island, Mim M. Ahmed, Barun K. Das, Pronob Das, Md S. Hossain, Md G. Kibria Jan 2024

Energy Management And Sizing Of A Stand-Alone Hybrid Renewable Energy System For Community Electricity, Fresh Water, And Cooking Gas Demands Of A Remote Island, Mim M. Ahmed, Barun K. Das, Pronob Das, Md S. Hossain, Md G. Kibria

Research outputs 2022 to 2026

Research into the off-grid hybrid energy system to provide reliable electricity to a remote community has extensively been done. However, simultaneous meeting electric, freshwater, and gas demands from the off-grid hybrid energy sources are very scarce in literature. Power- to-X (PtX) is gaining attention in recent days in the energy transition scenarios to generate green hydrogen, the primary product of the process as an energy carrier, which is deemed to replace conventional fuels to reach absolute carbon neutrality. In this study, renewable–based hybrid energy is developed to simultaneously meet the electricity, freshwater, and gas (cooking gas via methanation process) demands …


How Does Mine Tailings Slurry Solids Concentration Affect Stability Of Dam Embankment Slope?, Francis Otieno, Sanjay K. Shukla Jan 2024

How Does Mine Tailings Slurry Solids Concentration Affect Stability Of Dam Embankment Slope?, Francis Otieno, Sanjay K. Shukla

Research outputs 2022 to 2026

In view of many past failures of tailings storage facilities, practising engineers have been analysing current design guidelines for different elements of these facilities, including for tailings dams. In this paper, an attempt is made to investigate how varying tailings slurry solids concentration ((Formula presented.)) affects the stability of tailings dam embankment slope. To achieve this, elaborate two-dimensional limit equilibrium and finite element simulations were conducted and a steady-state seepage analysis was performed so as to obtain accurate free surface water flux through the slope. Initially, numerical analyses were performed for the downstream embankment slope when no material is retained …


Enhancing Wettability Prediction In The Presence Of Organics For Hydrogen Geo-Storage Through Data-Driven Machine Learning Modeling Of Rock/H2/Brine Systems, Zeeshan Tariq, Muhammad Ali, Nurudeen Yekeen, Auby Baban, Bicheng Yan, Shuyu Sun, Hussein Hoteit Dec 2023

Enhancing Wettability Prediction In The Presence Of Organics For Hydrogen Geo-Storage Through Data-Driven Machine Learning Modeling Of Rock/H2/Brine Systems, Zeeshan Tariq, Muhammad Ali, Nurudeen Yekeen, Auby Baban, Bicheng Yan, Shuyu Sun, Hussein Hoteit

Research outputs 2022 to 2026

The success of geological H2 storage relies significantly on rock–H2–brine interactions and wettability. Experimentally assessing the H2 wettability of storage/caprocks as a function of thermos-physical conditions is arduous because of high H2 reactivity and embrittlement damages. Data-driven machine learning (ML) modeling predictions of rock–H2–brine wettability are less strenuous and more precise. They can be conducted at geo-storage conditions that are impossible or hazardous to attain in the laboratory. Thus, ML models were utilized in this research to accurately model the wettability behavior of a ternary system consisting of H2, rock minerals (quartz and mica), and brine at different operating geological …


Impact Of Methylene Blue On Enhancing The Hydrocarbon Potential Of Early Cambrian Khewra Sandstone Formation From The Potwar Basin, Pakistan, Muhammad Ali, Abdul M. Shar, Nurudeen Yekeen, Hussein Abid, Muhammad S. Kamal, Hussein Hoteit Dec 2023

Impact Of Methylene Blue On Enhancing The Hydrocarbon Potential Of Early Cambrian Khewra Sandstone Formation From The Potwar Basin, Pakistan, Muhammad Ali, Abdul M. Shar, Nurudeen Yekeen, Hussein Abid, Muhammad S. Kamal, Hussein Hoteit

Research outputs 2022 to 2026

Significant amounts of hydrocarbon resources are left behind after primary and secondary recovery processes, necessitating the application of enhanced oil recovery (EOR) techniques for improving the recovery of trapped oil from subsurface formations. In this respect, the wettability of the rock is crucial in assessing the recovery and sweep efficiency of trapped oil. The subsurface reservoirs are inherently contaminated with organic acids, which renders them hydrophobic. Recent research has revealed the significant impacts of nanofluids, surfactants, and methyl orange on altering the wettability of organic-acid-contaminated subsurface formations into the water-wet state. This suggests that the toxic dye methylene blue (MB), …


A New Approach To Predicting Vertical Permeability For Carbonate Rocks In The Southern Mesopotamian Basin, Emad A. Al-Khdheeawi, Raed H. Allawi, Wisam I. Al-Rubaye, Stefan Iglauer Dec 2023

A New Approach To Predicting Vertical Permeability For Carbonate Rocks In The Southern Mesopotamian Basin, Emad A. Al-Khdheeawi, Raed H. Allawi, Wisam I. Al-Rubaye, Stefan Iglauer

Research outputs 2022 to 2026

Reservoir performance depends on many factors, and the most important one is permeability anisotropy. In addition, with high heterogeneity, it is essential to find unique relationships to predict permeability. Therefore, this study aims to predict vertical permeability based on horizontal permeability and porosity and to find new equations for carbonate reservoirs. This work relied on the 398 measured points of cores data collected from several wells in carbonate reservoirs. A new correlation for predicting vertical permeability for the whole data (369 samples) as a function of horizontal permeability and porosity has been developed. The results indicate that this new correlation …


Residual Trapping Of Co2, N2, And A Co2-N2 Mixture In Indiana Limestone Using Robust Nmr Coreflooding: Implications For Co2 Geological Storage, Amer Alanazi, Auby Baban, Muhammad Ali, Alireza Keshavarz, Stefan Iglauer, Hussein Hoteit Dec 2023

Residual Trapping Of Co2, N2, And A Co2-N2 Mixture In Indiana Limestone Using Robust Nmr Coreflooding: Implications For Co2 Geological Storage, Amer Alanazi, Auby Baban, Muhammad Ali, Alireza Keshavarz, Stefan Iglauer, Hussein Hoteit

Research outputs 2022 to 2026

Carbon capture and sequestration (CCS) in geological formations is a prominent solution for reducing anthropogenic carbon emissions and mitigating climate change. The capillary trapping of CO2 is a primary trapping mechanism governed by the pressure difference between the wetting and nonwetting phases in a porous rock, making the latter a key input parameter for dynamic simulation models. During the CCS operational process, however, the CO2 is prone to contamination by impurities from various sources such as surfaces (e.g., pipelines and tanks) and the subsurface (e.g., existing natural gas). Such contamination can strongly influence the overall CO2 wettability, storage capacity, and …


Capillary-Sealing Efficiency Of Mica-Proxy Caprock For Co2/H2 Geologic Storage In The Presence Of Organic Acids And Nanofluids, Amer Alanazi, Muhammad Ali, Mahmoud Mowafi, Saleh Bawazeer, Ziyad K K. Kaidar, Hussein Hoteit Dec 2023

Capillary-Sealing Efficiency Of Mica-Proxy Caprock For Co2/H2 Geologic Storage In The Presence Of Organic Acids And Nanofluids, Amer Alanazi, Muhammad Ali, Mahmoud Mowafi, Saleh Bawazeer, Ziyad K K. Kaidar, Hussein Hoteit

Research outputs 2022 to 2026

Toward a diversified low-carbon future, the geological storage of carbon dioxide (CO2) and hydrogen (H2) is regarded as a key enabler for an industrial-scale implementation. However, many geological formations, such as depleted oil and gas reservoirs, can contain inherent traces of organic molecules that dramatically affect their storage capacities and caprock sealing efficiency. Hence, using the right analysis to accurately determine the caprock sealing efficiency and storage capacity in the presence of organics is crucial for a secure and safe storage process. This study analyzed the sealing potential of a proxy caprock (mica) by calculating the capillary entry pressure and …


Wastewater Treatment Plants: The Missing Link In Global One-Health Surveillance And Management Of Antibiotic Resistance, Abdolmajid Gholizadeh, Mehdi Khiadani, Maryam Foroughi, Hadi Alizade Siuki, Hadi Mehrfar Dec 2023

Wastewater Treatment Plants: The Missing Link In Global One-Health Surveillance And Management Of Antibiotic Resistance, Abdolmajid Gholizadeh, Mehdi Khiadani, Maryam Foroughi, Hadi Alizade Siuki, Hadi Mehrfar

Research outputs 2022 to 2026

Introduction: As a global public health crisis, antibiotic resistance (AR) should be monitored and managed under the One-Health concept according to the World Health Organization (WHO), considering the interconnection between humans, animals, and the environment. But this approach often remains focused on human health and rarely on the environment and its compartments, especially wastewater as the main AR receptor. Wastewater treatment plants (WWTPs) not only are not designed for reliving AR but also provide appropriate conditions for enhancing AR through different mechanisms. Methods: By reviewing the research-based statistics on the inclusion of WWTPs in the One-Health/AR program crisis, this paper …


Effect Of Methylene Blue On Wetting Characteristics Of Quartz/H2/Brine Systems: Implication For Hydrogen Geological Storage, Fatemah Alhamad, Mujahid Ali, Nurudeen P. Yekeen, Muhammad Ali, Hussein Hoteit, Stefan Iglauer, Alireza Keshavarz Nov 2023

Effect Of Methylene Blue On Wetting Characteristics Of Quartz/H2/Brine Systems: Implication For Hydrogen Geological Storage, Fatemah Alhamad, Mujahid Ali, Nurudeen P. Yekeen, Muhammad Ali, Hussein Hoteit, Stefan Iglauer, Alireza Keshavarz

Research outputs 2022 to 2026

Hydrogen (H2) is considered a promising replacement for fossil fuels due to its enormous potential as an environmentally friendly and sustainable option compared to carbon-based fossil fuels. However, storing the vast quantity of H2 required to satisfy the global energy demand on the earth's surface can be difficult due to its compressibility and volatility. The best option for large-scale storage is underground H2 storage (UHS), which can be retrieved when needed. Rock wettability is vital in UHS because it determines the H2 storage capacity, containment security, and potential withdrawal and injection rates. Organic acid inherent in storage formations could make …


An Energy-Efficient Pumping System For Sustainable Cities And Society: Optimization, Mathematical Modeling, And, Impact Assessment, Md S. Hossain, Mohammad R. Islam, Arnob Das, Hasibul H. Himel, Barun K. Das, Tamal K. Roy, Md S. Hasan Nov 2023

An Energy-Efficient Pumping System For Sustainable Cities And Society: Optimization, Mathematical Modeling, And, Impact Assessment, Md S. Hossain, Mohammad R. Islam, Arnob Das, Hasibul H. Himel, Barun K. Das, Tamal K. Roy, Md S. Hasan

Research outputs 2022 to 2026

In this research work, we have focused on one of the reasons called drawdown (difference between static and pumping heads) for getting maximum efficiency. Therefore, various mechanical attachments have been designed and fabricated for performance evaluation. Since pump performance and drawdown are inversely related, the primary goal is to reduce drawdown as much as possible. The effect of various types of mechanical attachments on pump performance is investigated in this research work. Three bowl-type mechanical attachments can be integrated at once and can increase efficiency by up to 58%, which is 8% more than utilizing no attachment. Additionally, the impact …


Study On The Performance Of Solar Cells Cooled With Heatsink And Nanofluid Added With Aluminum Nanoparticle, Rouhollah Salehi, Ahmad Jahanbakhshi, Jong B. Ooi, Abbas Rohani, Mahmood R. Golzarian Nov 2023

Study On The Performance Of Solar Cells Cooled With Heatsink And Nanofluid Added With Aluminum Nanoparticle, Rouhollah Salehi, Ahmad Jahanbakhshi, Jong B. Ooi, Abbas Rohani, Mahmood R. Golzarian

Research outputs 2022 to 2026

The cooling of photovoltaic (PV) panels based on nanofluids is one of the emerging cooling methods to improve the efficiency of PV panels. In this study, the effects of aluminum nanoparticles on the cooling performance and conversion efficiency of PV panels were investigated experimentally. The surface temperature, output power, and efficiency of the PV panels were assessed in Mashhad, Iran on a sunny winter day in November 2020 under ambient temperatures between 10 and 17 °C. Experimental results indicated that the nanofluid with aluminum nanoparticle improved the solar panel efficiency and solar PV panel's output power by an average of …


Thermodynamic Properties Of Common Salts In Aqueous Solutions, Li Shu, Veeriah Jegatheesan, Leonardo Jegatheesan Oct 2023

Thermodynamic Properties Of Common Salts In Aqueous Solutions, Li Shu, Veeriah Jegatheesan, Leonardo Jegatheesan

Research outputs 2022 to 2026

A relationship between the activity of hydrogen ions and charge activity in an aqueous solution has been developed in a previous study. That study also revealed that the potential energy of an aqueous solution can be obtained by multiplying the charge activity with electrostatic potential of the solution. In this study, negative potential energy equalling Gibbs energy of four common salt (NaCl, KCl, NaNO3 and KNO3) solutions were quantified using the charge activity. Then the entropies of those salt solutions were computed using the Gibbs energy, enthalpy, and the charge activity. Charge activities were computed using the pH of those …