Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Understanding The Role Thin Film Interfaces Play In Solar Cell Performance And Stability, Mirra M. Rasmussen, Laura S. Bruckman, Ina T. Martin Apr 2023

Understanding The Role Thin Film Interfaces Play In Solar Cell Performance And Stability, Mirra M. Rasmussen, Laura S. Bruckman, Ina T. Martin

Student Scholarship

As more efficient and cost-effective photovoltaic (PV) architectures are developed, solar becomes an ever more competitive and viable replacement for fossil fuels. Full grid electrification necessitates the development of efficient, reliable, cost-effective technologies - and there is room for many different kinds of PV in this expanding market. The practical challenges and constraints of terawatt PV production have brought scalability and durability into sharp scientific focus. From a materials perspective, there are commonalities in the materials questions and challenges across different PV technologies. Whereas most PV technology is referred to by the absorber layer - e.g. silicon, or perovskite solar …


Statistical Analysis And Degradation Pathway Modeling Of Photovoltaic Minimodules With Varied Packaging Strategies, Sameera Nalin Venkat, Xuanji Yu, Jiqi Liu, Jakob Wegmueller, Jayvic Cristian Jimenez, Erika I. Barcelos, Hein Htet Aung, Roger H. French, Laura S. Bruckman Mar 2023

Statistical Analysis And Degradation Pathway Modeling Of Photovoltaic Minimodules With Varied Packaging Strategies, Sameera Nalin Venkat, Xuanji Yu, Jiqi Liu, Jakob Wegmueller, Jayvic Cristian Jimenez, Erika I. Barcelos, Hein Htet Aung, Roger H. French, Laura S. Bruckman

Faculty Scholarship

Degradation pathway models constructed using network structural equation modeling (netSEM) are used to study degradation modes and pathways active in photovoltaic (PV) system variants in exposure conditions of high humidity and temperature. This data-driven modeling technique enables the exploration of simultaneous pairwise and multiple regression relationships between variables in which several degradation modes are active in specific variants and exposure conditions. Durable and degrading variants are identified from the netSEM degradation mechanisms and pathways, along with potential ways to mitigate these pathways. A combination of domain knowledge and netSEM modeling shows that corrosion is the primary cause of the power …


Perovskite Film Formation For Solar Cell Absorbers: Effects Of Substrate Modification, Mirra M. Rasmussen, Kyle M. Crowley, Ina T. Martin Oct 2021

Perovskite Film Formation For Solar Cell Absorbers: Effects Of Substrate Modification, Mirra M. Rasmussen, Kyle M. Crowley, Ina T. Martin

Student Scholarship

As perovskite solar cell efficiencies have risen rapidly, practical constraints have made durability a critical concern. Whereas much attention has been paid to the development of the perovskite absorber layer, the charge transport layers can also be engineered to better the performance and stability of the device. This work uses the molecular modifier bromopropyltrimethoxysilane (BPTMS) to alter the interface between indium tin oxide (ITO, a common thin film solar cell transparent electrode) and methylammonium lead iodide (MAPbI3, a common perovskite absorber) to improve the morphology and stability of the perovskite absorber film. The substrate, molecular modifier, and perovskite film were …


Decoupling The Effects Of Interfacial Chemistry And Grain Size In Perovskite Stability, Mirra M. Rasmussen, Kyle M. Crowley, Miranda S. Gottlieb, Geneviève Sauvé, Ina T. Martin Jul 2021

Decoupling The Effects Of Interfacial Chemistry And Grain Size In Perovskite Stability, Mirra M. Rasmussen, Kyle M. Crowley, Miranda S. Gottlieb, Geneviève Sauvé, Ina T. Martin

Student Scholarship

No abstract provided.


Degradation Science: Mesoscopic Evolution And Temporal Analytics Of Photovoltaic Energy Materials, Roger H. French, Rudolf Podgornik, Timothy J. Peshek, Laura S. Bruckman, Yifan Xu, Nicholas R. Wheeler, Abdulkerim Gok, Yang Hu, Mohammad A. Hossain, Devin A. Gordon, Pei Zhao, Jiayang Sun, Guo-Qiang Zhang Aug 2015

Degradation Science: Mesoscopic Evolution And Temporal Analytics Of Photovoltaic Energy Materials, Roger H. French, Rudolf Podgornik, Timothy J. Peshek, Laura S. Bruckman, Yifan Xu, Nicholas R. Wheeler, Abdulkerim Gok, Yang Hu, Mohammad A. Hossain, Devin A. Gordon, Pei Zhao, Jiayang Sun, Guo-Qiang Zhang

Faculty Scholarship

Based on recent advances in nanoscience, data science and the availability of massive real-world datastreams, the mesoscopic evolution of mesoscopic energy materials can now be more fully studied. The temporal evolution is vastly complex in time and length scales and is fundamentally challenging to scientific understanding of degradation mechanisms and pathways responsible for energy materials evolution over lifetime. We propose a paradigm shift towards mesoscopic evolution modeling, based on physical and statistical models, that would integrate laboratory studies and real-world massive datastreams into a stress/mechanism/response framework with predictive capabilities. These epidemiological studies encompass the variability in properties that affect performance …