Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Towards Improving The Properties And Furthering Acceptance Of Advanced Technology Nuclear Fuels, Jennifer K. Watkins May 2022

Towards Improving The Properties And Furthering Acceptance Of Advanced Technology Nuclear Fuels, Jennifer K. Watkins

Boise State University Theses and Dissertations

To avoid detrimental environmental impacts from climate change, the world community needs to push for the use of clean energy technologies. Development of proposed advanced technology nuclear fuels supports efforts to ensure nuclear energy is included as a non-carbon emitting source of electricity generation. Advanced technology nuclear fuels, also referred to as accident tolerant fuels (ATFs), have received renewed interest for use in the current nuclear reactor fleet as well as in advanced reactor technologies due to their high uranium loading, desirable thermophysical properties, and performance under irradiation as compared to the benchmark oxide fuel. A limiting consideration for the …


First-Principles Magnetic Treatment Of The Uranium Nitride (100) Surface And Effect On Corrosion Initiation, Ember L. Sikorski, Brian J. Jaques, Lan Li Sep 2021

First-Principles Magnetic Treatment Of The Uranium Nitride (100) Surface And Effect On Corrosion Initiation, Ember L. Sikorski, Brian J. Jaques, Lan Li

Materials Science and Engineering Faculty Publications and Presentations

The magnetic properties of uranium nitride (UN) surfaces are not well understood experimentally or computationally but they have a significant effect on UN performance as a nuclear fuel. We investigated ferromagnetic (FM), antiferromagnetic (AFM), nonmagnetic (NM), and three hybrid magnetic structures of the most stable UN surface (100). To account for electron correlation and metastability, a U-ramp was performed to an effective Hubbard U-term of 2.0 eV. FM was found to be the most energetically favorable magnetic structure. Type 1 AFM slab was optimized to a new magnetic structure consisting of (100) planes with either all spin-up electrons, all spin-down …


The Influence Of Heat Treatment On Corrosion Behavior Of Martensitic Stainless Steel Uns 42670, Armen Kvryan May 2019

The Influence Of Heat Treatment On Corrosion Behavior Of Martensitic Stainless Steel Uns 42670, Armen Kvryan

Boise State University Theses and Dissertations

Ceaseless demand for lighter, faster, and more efficient aircraft has been one of the greatest driving forces behind bearing steel innovations. Recent studies demonstrate that corrosion is one of the leading causes of bearing failure in both military and commercial aircraft. High-performing bearing steels are available but are not being used in US military applications due to high cost and security issues when steels are produced outside of the continental United States. One approach to address this issue is to engineer steels that are cost-efficient and heat treated for corrosion resistance, long wear life, etc.

This dissertation presents information on …


Corrosion Initiation And Propagation On Carburized Martensitic Stainless Steel Surfaces Studied Via Advanced Scanning Probe Microscopy, Armen Kvryan, Corey M. Efaw, Kari A. Higginbotham, Olivia O. Maryon, Paul H. Davis, Elton Graugnard, Michael F. Hurley Mar 2019

Corrosion Initiation And Propagation On Carburized Martensitic Stainless Steel Surfaces Studied Via Advanced Scanning Probe Microscopy, Armen Kvryan, Corey M. Efaw, Kari A. Higginbotham, Olivia O. Maryon, Paul H. Davis, Elton Graugnard, Michael F. Hurley

Materials Science and Engineering Faculty Publications and Presentations

Historically, high carbon steels have been used in mechanical applications because their high surface hardness contributes to excellent wear performance. However, in aggressive environments, current bearing steels exhibit insufficient corrosion resistance. Martensitic stainless steels are attractive for bearing applications due to their high corrosion resistance and ability to be surface hardened via carburizing heat treatments. Here three different carburizing heat treatments were applied to UNS S42670: a high-temperature temper (HTT), a low-temperature temper (LTT), and carbo-nitriding (CN). Magnetic force microscopy showed differences in magnetic domains between the matrix and carbides, while scanning Kelvin probe force microscopy (SKPFM) revealed a 90–200 …


Toward Improving Ambient Volta Potential Measurements With Skpfm For Corrosion Studies, Corey M. Efaw, Thiago Da Silva, Paul H. Davis, Lan Li, Elton Graugnard, Michael F. Hurley Jan 2019

Toward Improving Ambient Volta Potential Measurements With Skpfm For Corrosion Studies, Corey M. Efaw, Thiago Da Silva, Paul H. Davis, Lan Li, Elton Graugnard, Michael F. Hurley

Materials Science and Engineering Faculty Publications and Presentations

Scanning Kelvin probe force microscopy (SKPFM) is used in corrosion studies to quantify the relative nobility of different microstructural features present within complex metallic systems and thereby elucidate possible corrosion initiation sites. However, Volta potential differences (VPDs) measured via SKPFM in the literature for metal alloys exhibit large variability, making interpretation and application for corrosion studies difficult. We have developed an improved method for referencing SKPFM VPDs by quantifying the closely related work function of the probe relative to an inert gold standard whose modified work function is calculated via density functional theory (DFT). By measuring and tracking changes in …


Controlling The Corrosion And Cathodic Activation Of Magnesium Via Microalloying Additions Of Ge, R. L. Liu, M. F. Hurley, A. Kvryan, G. Williams, J. R. Scully, N. Birbilis Jun 2016

Controlling The Corrosion And Cathodic Activation Of Magnesium Via Microalloying Additions Of Ge, R. L. Liu, M. F. Hurley, A. Kvryan, G. Williams, J. R. Scully, N. Birbilis

Materials Science and Engineering Faculty Publications and Presentations

The evolution of corrosion morphology and kinetics for magnesium (Mg) have been demonstrated to be influenced by cathodic activation, which implies that the rate of the cathodic partial reaction is enhanced as a result of anodic dissolution. This phenomenon was recently demonstrated to be moderated by the use of arsenic (As) alloying as a poison for the cathodic reaction, leading to significantly improved corrosion resistance. The pursuit of alternatives to toxic As is important as a means to imparting a technologically safe and effective corrosion control method for Mg (and its alloys). In this work, Mg was microalloyed with germanium …


Microgalvanic Corrosion Behavior Of Cu-Ag Active Braze Alloys Investigated With Skpfm, Armen Kvryan, Kari Livingston, Corey M. Efaw, Kyle Knori, Brian J. Jaques, Paul H. Davis, Darryl P. Butt, Michael F. Hurley Apr 2016

Microgalvanic Corrosion Behavior Of Cu-Ag Active Braze Alloys Investigated With Skpfm, Armen Kvryan, Kari Livingston, Corey M. Efaw, Kyle Knori, Brian J. Jaques, Paul H. Davis, Darryl P. Butt, Michael F. Hurley

Materials Science and Engineering Faculty Publications and Presentations

The nature of microgalvanic couple driven corrosion of brazed joints was investigated. 316L stainless steel samples were joined using Cu-Ag-Ti and Cu-Ag-In-Ti braze alloys. Phase and elemental composition across each braze and parent metal interface was characterized and scanning Kelvin probe force microscopy (SKPFM) was used to map the Volta potential differences. Co-localization of SKPFM with Energy Dispersive Spectroscopy (EDS) measurements enabled spatially resolved correlation of potential differences with composition and subsequent galvanic corrosion behavior. Following exposure to the aggressive solution, corrosion damage morphology was characterized to determine the mode of attack and likely initiation areas. When exposed to 0.6 …


High Temperature Oxidation Kinetics Of Dysprosium Particles, Brian J. Jaques, Darryl P. Butt Sep 2015

High Temperature Oxidation Kinetics Of Dysprosium Particles, Brian J. Jaques, Darryl P. Butt

Materials Science and Engineering Faculty Publications and Presentations

Rare earth elements have been recognized as critical materials for the advancement of many strategic and green technologies. Recently, the United States Department of Energy has invested many millions of dollars to enhance, protect, and forecast their production and management. The work presented here attempts to clarify the limited and contradictory literature on the oxidation behavior of the rare earth metal, dysprosium. Dysprosium particles were isothermally oxidized from 500 to 1000 °C in N2–(2%, 20%, and 50%) O2 and Ar–20% O2 using simultaneous thermal analysis techniques. Two distinct oxidation regions were identified at each isothermal temperature …


On The Fe Enrichment During Anodic Polarization Of Mg And Its Impact On Hydrogen Evolution, D. Lysne, S. Thomas, M. F. Hurley, N. Birbilis May 2015

On The Fe Enrichment During Anodic Polarization Of Mg And Its Impact On Hydrogen Evolution, D. Lysne, S. Thomas, M. F. Hurley, N. Birbilis

Materials Science and Engineering Faculty Publications and Presentations

Iron (Fe) is an unintentional impurity present in pure magnesium (Mg) and Mg alloys, albeit nominally in low and innocuous concentrations (< 100 ppmw). Since Fe, like most metals, is more noble than Mg, the presence of Fe impurities can serve as cathodic sites within the Mg matrix. During anodic polarization of Mg, incongruent dissolution can lead to undissolved Fe impurities accumulating upon the Mg surface, permitting an increase in the overall rate of hydrogen evolution. The experimental manifestation of the incongruent dissolution of Mg, has not yet been clarified, wherein, the extent and efficiency of Fe enrichment during anodic polarization is not known, and also the increase in the hydrogen evolution rate due to Fe enrichment has not been quantified. In this work, Mg specimens with Fe concentration between 40 to 13,000 ppmw were examined in 0.1 M NaCl to obtain a quantitative relation between the Fe concentration and the rate of cathodic hydrogen evolution. These base-line alloys were then anodically polarized to facilitate surface Fe enrichment, and subsequently again cathodically polarized to determine the impact of prior dissolution and Fe enrichment on the subsequent hydrogen evolution. A simple model to predict Fe enrichment was used to analyze the electrochemical data and predict the extent and efficiency of Fe enrichment.