Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Mechanical Engineering

Energy

Theses/Dissertations

Institution
Publication Year
Publication

Articles 1 - 30 of 52

Full-Text Articles in Engineering

Synthesis And Characterization Of Electrode Materials Of Solid Oxide Cells For Energy Conversion And Storage, Haixia Li Oct 2023

Synthesis And Characterization Of Electrode Materials Of Solid Oxide Cells For Energy Conversion And Storage, Haixia Li

Theses and Dissertations

Solid oxide cells (SOCs) can directly convert chemical energy to electricity in the fuel cell mode and store electricity to chemicals in the electrolysis mode. However, there are still critical barriers, such as energy efficiency and durability, for developing and commercializing SOCs. This dissertation aims to design electrode materials and optimize the cell fabrication process to address the critical barriers for SOCs in energy conversion and energy storage applications. Therefore, one primary focus of the dissertation is to develop robust fuel electrode material for solid oxide fuel cells (SOFCs) with improved sulfur tolerance. In addition, the design of novel fuel …


Material Development And Optimization Of Solid Oxide Cells For Energy Conversion And Storage, Wanhua Wang Oct 2023

Material Development And Optimization Of Solid Oxide Cells For Energy Conversion And Storage, Wanhua Wang

Theses and Dissertations

There has been an increasing interest in clean and renewable energy generation for highlighted energy and environmental concerns. Solid oxide cell (SOC) has been considered as one of the most promising technologies since it can convert chemical energy to electricity in the fuel cell mode and store electricity to chemicals in the electrolysis mode. The present work is devoted to materials development in both oxygen ion conducting SOC (O-SOC) and proton conducting SOC (P-SOC). The objective of this study is to design and optimize the electrolyte and electrode materials for SOC in energy conversion and energy storage applications. One major …


Evaluation Of Digital Twin Approaches For Thermal Modeling And Energy Optimization For Existing Buildings, Jason Bastie Muermann Sep 2023

Evaluation Of Digital Twin Approaches For Thermal Modeling And Energy Optimization For Existing Buildings, Jason Bastie Muermann

Theses and Dissertations

Residential, commercial, and industrial building sectors in the United States were responsible for 42% of the nation’s consumption of 100.2 quadrillion BTUs of energy in 2019 [1]. 80% of the nation’s energy is sourced from fossil fuels, including coal, natural gas, and petroleum. Fossil fuels are known contributors to carbon emissions and climate change, making energy reduction vital. Consequently, New Jersey Department of Military and Veterans Affairs (NJDMAVA) is tasked with evaluating energy consumption and efficiency in all New Jersey Army National Guard (NJARNG) facilities, as mandated by TAG Policy Letter 18-5, Executive Order 13990, and the Energy Independence and …


Heat Transfer Characteristics Of Latent Heat Thermal Energy Storage, Kedar Prashant Shete Apr 2023

Heat Transfer Characteristics Of Latent Heat Thermal Energy Storage, Kedar Prashant Shete

Doctoral Dissertations

Latent heat thermal energy storage (LHTES) systems can be used to reduce electric demand when used in conjunction with Combined Heat and Power Plants or HVAC(Heating, Ventilation, Refrigeration and Air-Conditioning), as they can regulate the demand and supply of thermal energy. They can also be used to integrate renewable energy sources with the grid. A design procedure and performance modeling is required for designing and using thermal energy storage systems effectively. We propose hypotheses about the performance of an LHTES device with different operating conditions and material properties, for devices that are governed by different modes of heat transfer. We …


System Analysis Of An Internal Combustion Engine (Ice) – Solid Oxide Fuel Cell (Sofc) Hybrid Cycle, Jose Javier Colon Rodriguez Jan 2023

System Analysis Of An Internal Combustion Engine (Ice) – Solid Oxide Fuel Cell (Sofc) Hybrid Cycle, Jose Javier Colon Rodriguez

Graduate Theses, Dissertations, and Problem Reports

Due to the intermittent nature of renewable energy and the rigid operation of existing coal plants, the need for flexible power generation technology is eminent. Hybrid energy systems have shown potential for flexible, grid following dynamics while maintaining higher efficiencies. The work below focuses on the performance analysis of a proposed 100 kW pressurized Internal Combustion Engine (ICE) and Solid Oxide Fuel Cell (SOFC) hybrid system. The un-utilized fuel from the SOFC stack provided the chemical energy to operate the engine. A turbocharger was used to deliver the necessary air flow for both the stack and engine. An external reformer …


Development And Testing Of A 1:70 Scale Model Wind Turbine Of The Iea Reference 15 Mw Floating Offshore System, Amber Parker May 2022

Development And Testing Of A 1:70 Scale Model Wind Turbine Of The Iea Reference 15 Mw Floating Offshore System, Amber Parker

Electronic Theses and Dissertations

This thesis presents the development of a 1/70th scale performance-matched wind turbine intended for wind and wave basin model testing of commercially viable floating wind turbine structures based off of the International Energy Agency (IEA) Wind 15 MW design. The focus of this demonstration is to test active blade pitch response controls and to provide an experimental dataset for use by modelers and industry for future turbine improvements. Future research is planned to test the turbine in conjunction with an actively damping hull to test the interactions between the two control systems.

Outlined in this thesis are the methods of …


Energy Planning Model Design For Forecasting The Final Energy Consumption Using Artificial Neural Networks, Haidy Eissa Dec 2021

Energy Planning Model Design For Forecasting The Final Energy Consumption Using Artificial Neural Networks, Haidy Eissa

Theses and Dissertations

“Energy Trilemma” has recently received an increasing concern among policy makers. The trilemma conceptual framework is based on three main dimensions: environmental sustainability, energy equity, and energy security. Energy security reflects a nation’s capability to meet current and future energy demand. Rational energy planning is thus a fundamental aspect to articulate energy policies. The energy system is huge and complex, accordingly in order to guarantee the availability of energy supply, it is necessary to implement strategies on the consumption side. Energy modeling is a tool that helps policy makers and researchers understand the fluctuations in the energy system. Over the …


Modeling Portfolios Of Low Carbon Energy Generation Under Deep Uncertainty, Franklyn Kanyako Oct 2021

Modeling Portfolios Of Low Carbon Energy Generation Under Deep Uncertainty, Franklyn Kanyako

Doctoral Dissertations

In the 2015 Paris Agreement, nearly every country pledge through the Nationally Determined Contributions (NDCs) increased adoption of low carbon energy technologies in their energy system. However, allocating investments to different low carbon energy technologies under rising demand for energy and budget constraints, uncertain technical change in these technologies involves maneuvering significant uncertainties among experts, models, and decision-makers. We examine the interactions of low carbon energy sources (LCES) under the condition of deep uncertainty. Deep uncertainty directly impacts the understanding of the role of low carbon energy technologies in climate change mitigation and how much R&D investment should be allocated …


Dynamic Hvac Energy Management Using Commercial Building Occupancy Metrics & Neural Networks, Krishna Chaitanya Jagadeesh Simma Jul 2021

Dynamic Hvac Energy Management Using Commercial Building Occupancy Metrics & Neural Networks, Krishna Chaitanya Jagadeesh Simma

Civil Engineering ETDs

With the rise of technology use in buildings, it is now possible to collect data that can be used to improve building energy consumption. One factor that has significant impact on building energy consumption is occupancy. Recent studies have shown promising results in obtaining occupancy information from existing infrastructure such as WiFi router networks. However, these existing frameworks require additional investments through software upgrades, added infrastructure, computational resources, and may raise occupant privacy concerns. Additionally, with occupant thermal comfort statistics being lower than ASHAREA specified standards, a novel approach for indoor climate control is needed. To address the limitations in …


Cal Poly Wind Power: Wind Turbine Prototype, Sophie A. Spencer, Maggie Nevrly, Michael Reyna, Loi Q. Nguyen Jun 2021

Cal Poly Wind Power: Wind Turbine Prototype, Sophie A. Spencer, Maggie Nevrly, Michael Reyna, Loi Q. Nguyen

Mechanical Engineering

The Cal Poly Wind Power (CPWP) club is competing in the Collegiate Wind Competition (CWC) hosted by the National Renewable Energy Laboratory (NREL). The CWC is hosted annually by NREL to increase the number of skilled workers prepared to work in the wind energy industry. Our senior project team is one of several design teams contributing to the CPWP prototype turbine design including the pitching mechanism, blade design, generator, and shaft. The scope of this project is to design the yaw mechanism, tower, and nacelle. The goal is to create components that function well with other planned components and are …


Sustainable Energy Storage, Jacob S. Grillo, Alyse C. Coonce, Jack R. Linchey, Nick P. Schnorr Jun 2021

Sustainable Energy Storage, Jacob S. Grillo, Alyse C. Coonce, Jack R. Linchey, Nick P. Schnorr

Mechanical Engineering

This Final Design Review document covers the work we, students at California Polytechnic State University – San Luis Obispo, have performed in collaboration with Mr. Harish Bhutani and Dr. Mohammad Noori. The project’s intent is to create an energy storage system for off-grid and developing region applications using alternative technologies to lithium-ion battery storage. We plan to manufacture and assemble a scale model of the energy storage system to prove effectiveness and practicality. This system will store enough energy to power basic appliances and essential devices for a house or community. The chosen design direction will be a flywheel, as …


Feasibility Study Of Portable Solar Powered Blood Storing Refrigerator, Saroj Subedi May 2021

Feasibility Study Of Portable Solar Powered Blood Storing Refrigerator, Saroj Subedi

Honors Theses

This report is focused on the preliminary feasibility of portable solar-powered blood-storing refrigerators primarily based on calculations of energy required to maintain the temperature of the refrigerator, the electricity required throughout the day, calculating sufficiency of power supplied by the solar panel, and selection of battery for power storage. The method and the trend of a feasibility study involve the study of blood properties, separation of blood components after donation, and their storage conditions. Then, the portable size of the refrigeration has been proposed with three different compartments for storage of each blood component. The further methods involve the selection …


Smud Solar Regatta, Logan Garby, Nam Le, Jacob Singer, Alejandro Carrera, Laura Casas Mar 2021

Smud Solar Regatta, Logan Garby, Nam Le, Jacob Singer, Alejandro Carrera, Laura Casas

Mechanical Engineering

The Sacramento Municipal Utility District (SMUD) hosts the Solar Regatta every year in Rancho Seco, CA, a competition which consists of teams building a solar powered boat to compete in three races: the sprint race, endurance race, and slalom race. The Cal Poly Solar Regatta team was informed mid-project by SMUD that the competition has been canceled once again for spring 2021, but the team decided to move forward with the construction of the boat. The previous Cal Poly team from 2019/2020 designed the hull and propulsion system of the boat. The 2020/2021 team worked with the previous team in …


A Theoretical Study On Integration And Optimization Of Gas Turbine Problems With Solar Energy System, Ahmad M. Abubaker Jan 2021

A Theoretical Study On Integration And Optimization Of Gas Turbine Problems With Solar Energy System, Ahmad M. Abubaker

Theses and Dissertations--Mechanical Engineering

Gas Turbine (GT) power plants suffer from sensitivity to ambient-air temperatures, high fuel consumption, and a high amount of waste heat dumped into the ambient. Various solutions were proposed to solve these drawbacks, which could simultaneously solve at most two problems, usually at the expense of the third. For instance, inlet-air cooling can reduce ambient-air temperatures but will result in increased fuel consumption. However, in this work, a novel cascaded system was integrated into a combined cycle, capable of simultaneously solving all the aforementioned GT drawbacks. Parabolic trough collectors were used to preheat the air at the combustion chamber inlet …


Improving The Piezoelectric Properties Of Flexible Polymer-Nanoparticle Energy Harvesters, Muhammet Emin Cavusoglu Jun 2020

Improving The Piezoelectric Properties Of Flexible Polymer-Nanoparticle Energy Harvesters, Muhammet Emin Cavusoglu

Theses and Dissertations

In this research, one of the widely used polymers, poly(vinylidene fluoride)(PVDF), was used to develop thin-film polymer energy harvesters. Dimethylformamide (DMF) and methyl ethyl ketone (MEK) were used to dissolve the PVDF powder. Four different (0%, 3%, 5%, and 7%) ZnO nanoparticle (NP) concentrations were used to enhance the electrical output of the thin-film energy harvesters. A sonication bath and additional MEK were used in dispersing the ZnO NPs to obtained uniform PVDF/ZnO NP solution. The electrode poling technique was used for dipole alignment to improve the electrical performance of the devices. The fabricated samples were tested using the tensile …


Integrated Resource Plan For Portland General Electric (Pge), Mary Biswal, Alejandro Castelan May 2020

Integrated Resource Plan For Portland General Electric (Pge), Mary Biswal, Alejandro Castelan

Master's Projects and Capstones

An integrated resource plan (IRP) for Portland General Electric (PGE) is developed in this master’s project. The IRP is based on capacity expansion modeling for zero-carbon emission scenarios. PGE is a public electric utility based in Oregon and serves around 887,000 customers across a territory of 4,000 sq. miles. The utility’s resource mix is currently heavily dependent on natural gas making up almost 50% of its capacity. While the state renewable portfolio standards (RPS) require Oregon power utilities to derive 50% of their generation from renewable sources by 2040, PGE plans to move rapidly into a clean energy mix by …


An Integrated Resource Plan For Arizona Public Service Electric (Aps), Irene Boghdadi, Randy Chiu May 2020

An Integrated Resource Plan For Arizona Public Service Electric (Aps), Irene Boghdadi, Randy Chiu

Master's Projects and Capstones

Our Masters Capstone Project is an Integrated Resource Plan (IRP) for Arizona’s largest electric utility, Arizona Public Service Electric (APS).

An IRP is developed by utilities to identify the optimal combination of demand- and supply-side resources needed to reliably meet forecasted demand for energy and capacity, including a planning reserve margin, over a future period.

In addition to APS’s obligation to serve the growing load in Arizona while minimizing costs, it is required by the state to adhere to the Renewable Energy Standard (RES) policy of 15 percent retail sales from renewable energy resources by 2025.

The analysis described in …


Dual-Axis Solar Tracker, Bryan Kennedy Jan 2020

Dual-Axis Solar Tracker, Bryan Kennedy

All Undergraduate Projects

Renewable energies, and fuels that are not fossil fuel-based, are one of the prolific topics of debate in modern society. With climate change now becoming a primary focus for scientists and innovators of today, one of the areas for the largest amount of potential and growth is that of the capturing and utilization of Solar Energy. This method involves using a mechanical system to track the progression of the sun as it traverses the sky throughout the day. A dual-axis solar tracker such as the one designed and built for this project, can follow the sun both azimuthally and in …


On The Energy Sustainability Of Active And Passive Building Integrated Technologies In The Context Of A Changing Climate For Tropical Coastal Cities, Rabindra Pokhrel Jan 2020

On The Energy Sustainability Of Active And Passive Building Integrated Technologies In The Context Of A Changing Climate For Tropical Coastal Cities, Rabindra Pokhrel

Dissertations and Theses

Caribbean Sea surface temperatures have been rising at an alarming rate of 0.020C/year. The effect of rising sea surface temperatures is reflected in increasing in 2m air temperature over the Caribbean. The rise in extreme temperatures increases human discomfort and energy demands for air conditioning (AC) putting both the population and energy infrastructure at higher risk of vulnerability. This vulnerability is amplified in compact cities where anthropogenic heat removal from the built environment further increases the temperature of the urban canyon with feedback on human comfort and energy demands. Although there has been prior work reported on mitigating energy demands …


Hvac System Energy Audit For Leverett Elementary School, Connor Smalling Dec 2019

Hvac System Energy Audit For Leverett Elementary School, Connor Smalling

Biological and Agricultural Engineering Undergraduate Honors Theses

Leverett Elementary School is located in Fayetteville, AR. The school needs significant upgrades to its infrastructure. The Fayetteville Public School District has voted to pursue an Energy Services Performance Contract (ESPC) in order to finance the desired upgrades to Leverett Elementary, among other schools in the district.

The scope of this thesis was to perform an energy audit on the existing heating, ventilation, and air conditioning (HVAC) system. By using an energy modeling software, eQuest, the building and the existing base system were modeled to determine utility consumption. Three different HVAC system alternatives were analyzed against the base system by …


Swarm Behavior To Mitigate Rebound In Air Conditioning Demand Response Events, Jason Yasuto Kuwada Aug 2019

Swarm Behavior To Mitigate Rebound In Air Conditioning Demand Response Events, Jason Yasuto Kuwada

Boise State University Theses and Dissertations

Thermostatically Controlled Loads (TCLs) have shown great potential for Demand Response (DR) events. However, it has been commonly seen that DR events using TCLs may cause demand rebound, especially in homogeneous populations. To further explore the potential for DR events, as well as the negative effects, a stability and resilience analysis were performed on multiple populations and verified with agent based modeling simulations.

At the core of this study is an added thermostat criterion created from the combination of a proportional gain and the average compressor operating state of neighboring TCLs. Where DR events in TCLs are commonly controlled by …


Isentropic Efficiency And Theoretical Analysis Of The Planetary Rotor Expander, Joseph L. James Aug 2019

Isentropic Efficiency And Theoretical Analysis Of The Planetary Rotor Expander, Joseph L. James

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Expanders allow pressurized fluids to undergo a pressure decrease in a controlled environment via volumetric growth to extract fluid energy. There are many types of expanders, and the objective of this thesis is to model the efficiencies of the planetary rotor expander (PRE), a century-old design undeveloped due to insufficient manufacturing capabilities (until recently). Geometric relationships are derived and mathematical models are generated to determine the efficiency of the PRE as a function of design variables. Two industrially relevant case studies show that, to maximize isentropic efficiency, the planetary rotor expander (PRE) rotational frequency is maximized and rotor geometry optimized.


Numerical Investigation Of Coalescence-Induced Self-Propelled Behavior Of Droplets On Non-Wetting Surfaces And Wedged Surfaces., Yan Chen May 2019

Numerical Investigation Of Coalescence-Induced Self-Propelled Behavior Of Droplets On Non-Wetting Surfaces And Wedged Surfaces., Yan Chen

Electronic Theses and Dissertations

When small drops coalesce on a superhydrophobic surface, the merged drop can jump away from the surface due to the surface energy released during the coalescence. This self-propelled behavior has been observed on various superhydrophobic surfaces and has potential applications in areas related to the heat and mass transfer, such as heat exchangers, anti-icing and anti-frost devices, thermal management and water harvesting. The jumping velocity model was obtained based on published experimental data and the balance of various energy terms described in previous studies. However, the self-propelled mechanism is still not fully understood. In this study, the self-propelled droplet phenomenon …


Dual Axis Solar Tracker: Trends, Influence & Impact, Alazone Smith Jan 2019

Dual Axis Solar Tracker: Trends, Influence & Impact, Alazone Smith

Undergraduate Honors Theses

This supplementary document examines the international relevance and impact of the device in the Central Washington University, M.E.T. Senior Project entitled, “Dual-Axis Solar Tracker”. This is done so by analyzing the data collected from the device, as well as related trends in society, and establishing connections between the device’s viability and its impact within the society. Climate change, the solar industry, technology, policy, and market are the main topics of research within this document to provide background and context for the methods of analysis. Following intensive research, two major research strategies were implemented: (1) the data collected from the device …


Design Of Wind Turbine Tower Height And Blade Length: An Optimization Approach, Ryan Wass Sep 2018

Design Of Wind Turbine Tower Height And Blade Length: An Optimization Approach, Ryan Wass

Mechanical Engineering Undergraduate Honors Theses

The wind industry is a fast growing market and is quickly becoming competitive with traditional non-renewable energy resources. As with any developing industry, research must continually be redefined as more complex understandings of design variables are learned. Optimization studies are common ways to quickly refine design variable selections. Historical wind turbine data shows that the tower hub height to rotor diameter ratio scales almost linearly. However there is no specific rule that dictates the optimum hub height for a given diameter. This study addresses this question by using an Excel based optimization program to determine the height to diameter ratio …


Applications Of Latent Heat Storage Using Phase Change Materials, Daniel Giroux Jun 2018

Applications Of Latent Heat Storage Using Phase Change Materials, Daniel Giroux

Honors Theses

Thermal Storage Systems are gaining more attention in recent years with the increased emphasis on more renewable energy sources. Energy storage is necessary whenever there is greater amounts of energy being produced than is required. Various improvements to the conventional heat storage system can be made by integrating latent heat storage into the conventional heat storage system. Latent heat storage can be utilized for thermal storage applications by using phase change materials, materials that will undergo a change in their physical state in the temperature range desired for heat storage.

Analysis was conducted on four different waxes considering the waxes …


Single-Stage, Venturi-Driven Desalination System, Brandon Proetto May 2018

Single-Stage, Venturi-Driven Desalination System, Brandon Proetto

Mechanical & Aerospace Engineering Theses & Dissertations

Water demand is increasing at a rapid pace due to population increase, industrial expansion, and agricultural development. The use of desalination technology to meet the high water demands has increased global online desalination capacity from 47 million m^3/d in 2007 to 92.5 million m^3/d as of June 2017 [49]. Membrane and thermal processes are the two mainstream desalination categories used worldwide for desalination plants. Reverse Osmosis (RO) is the most widely used membrane process and it has become the dominant technology for building desalination plants over recent decades. Thermal distillation, however, has become less and less competitive due to its …


Simulation Of The Inertia Friction Welding Process Using A Subscale Specimen And A Friction Stir Welder, Ty Samual Dansie Apr 2018

Simulation Of The Inertia Friction Welding Process Using A Subscale Specimen And A Friction Stir Welder, Ty Samual Dansie

Theses and Dissertations

This study develops a method to simulate a full-scale inertia friction weld with a sub-scale specimen and modifies a direct drive friction stir welder to perform the welding process. A torque meter is fabricated for the FSW machine to measure weld torque. Machine controls are modified to enable a force control during the IFW process. An equation is created to measure weld upset due to deflection of the FSW machine. Data obtained from a full-scale inertia friction weld are altered to account for the geometrical differences between the sub-scale and full-scale specimens. The IFW are simulated with the sub-scale specimen …


Visualization And 3d Printing Of A 3d Solar Tracker Model Using Mayavi And Pov-Ray, Aditya Mehra Aug 2017

Visualization And 3d Printing Of A 3d Solar Tracker Model Using Mayavi And Pov-Ray, Aditya Mehra

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

In this work, we have created a realistic model of a solar tracker using Mayavi: 3D scientific data visualization and plotting in Python, Enthought Canopy:a comprehensive Python analysis environment and Persistence of Vision Ray Tracer, or POV-Ray, a ray tracing program which generates photo-realistic images from a text-based scene description, a model of the solar tracker was also 3D printed.


Parametric And Design Analysis On Thermoelectric Generators, Shouyuan Huang Aug 2016

Parametric And Design Analysis On Thermoelectric Generators, Shouyuan Huang

Open Access Theses

In facing the limited energy source reserves and environmental problems, thermoelectric generators (TEGs) are one of the promising waste heat recovery systems. The modern TEGs for exhaust stream (e.g. from automobiles) can improve the fuel economy by around 5%, taking advantage of the recent developed thermoelectric (TE) materials.

In this work, we aimed at designing a TEG as an add-on module for a gas-phase heat exchanger with maximized power output, and without negative impact (e.g. maintaining a minimum heat dissipation rate from the hot side). We first developed a parametric optimization algorithm using response surface method (RSM) and genetic algorithm …