Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Engineering

Liquid Tab, Nathan Hulet Jan 2023

Liquid Tab, Nathan Hulet

Williams Honors College, Honors Research Projects

Guitar transcription is a complex task requiring significant time, skill, and musical knowledge to achieve accurate results. Since most music is recorded and processed digitally, it would seem like many tools to digitally analyze and transcribe the audio would be available. However, the problem of automatic transcription presents many more difficulties than are initially evident. There are multiple ways to play a guitar, many diverse styles of playing, and every guitar sounds different. These problems become even more difficult considering the varying qualities of recordings and levels of background noise.

Machine learning has proven itself to be a flexible tool …


Radiomic Features To Predict Overall Survival Time For Patients With Glioblastoma Brain Tumors Based On Machine Learning And Deep Learning Methods, Lina Chato May 2022

Radiomic Features To Predict Overall Survival Time For Patients With Glioblastoma Brain Tumors Based On Machine Learning And Deep Learning Methods, Lina Chato

UNLV Theses, Dissertations, Professional Papers, and Capstones

Machine Learning (ML) methods including Deep Learning (DL) Methods have been employed in the medical field to improve diagnosis process and patient’s prognosis outcomes. Glioblastoma multiforme is an extremely aggressive Glioma brain tumor that has a poor survival rate. Understanding the behavior of the Glioblastoma brain tumor is still uncertain and some factors are still unrecognized. In fact, the tumor behavior is important to decide a proper treatment plan and to improve a patient’s health. The aim of this dissertation is to develop a Computer-Aided-Diagnosis system (CADiag) based on ML/DL methods to automatically estimate the Overall Survival Time (OST) for …


Application Of Artificial Intelligence For Co2 Storage In Saline Aquifer (Smart Proxy For Snap-Shot In Time), Marwan Mohammed Alnuaimi Jan 2022

Application Of Artificial Intelligence For Co2 Storage In Saline Aquifer (Smart Proxy For Snap-Shot In Time), Marwan Mohammed Alnuaimi

Graduate Theses, Dissertations, and Problem Reports

In recent years, artificial intelligence (AI) and machine learning (ML) technology have grown in popularity. Smart Proxy Models (SPM) are AI/ML based data-driven models which have proven to be quite crucial in petroleum engineering domain with abundant data, or operations in which large surface/ subsurface volume of data is generated. Climate change mitigation is one application of such technology to simulate and monitor CO2 injection into underground formations.

The goal of the SPM developed in this study is to replicate the results (in terms of pressure and saturation outputs) of the numerical reservoir simulation model (CMG) for CO2 injection into …


Energy Planning Model Design For Forecasting The Final Energy Consumption Using Artificial Neural Networks, Haidy Eissa Dec 2021

Energy Planning Model Design For Forecasting The Final Energy Consumption Using Artificial Neural Networks, Haidy Eissa

Theses and Dissertations

“Energy Trilemma” has recently received an increasing concern among policy makers. The trilemma conceptual framework is based on three main dimensions: environmental sustainability, energy equity, and energy security. Energy security reflects a nation’s capability to meet current and future energy demand. Rational energy planning is thus a fundamental aspect to articulate energy policies. The energy system is huge and complex, accordingly in order to guarantee the availability of energy supply, it is necessary to implement strategies on the consumption side. Energy modeling is a tool that helps policy makers and researchers understand the fluctuations in the energy system. Over the …


Computational Intelligent Impact Force Modeling And Monitoring In Hislo Conditions For Maximizing Surface Mining Efficiency, Safety, And Health, Danish Ali Jan 2021

Computational Intelligent Impact Force Modeling And Monitoring In Hislo Conditions For Maximizing Surface Mining Efficiency, Safety, And Health, Danish Ali

Doctoral Dissertations

"Shovel-truck systems are the most widely employed excavation and material handling systems for surface mining operations. During this process, a high-impact shovel loading operation (HISLO) produces large forces that cause extreme whole body vibrations (WBV) that can severely affect the safety and health of haul truck operators. Previously developed solutions have failed to produce satisfactory results as the vibrations at the truck operator seat still exceed the “Extremely Uncomfortable Limits”. This study was a novel effort in developing deep learning-based solution to the HISLO problem.

This research study developed a rigorous mathematical model and a 3D virtual simulation model to …


Artificial Intelligence Towards The Wireless Channel Modeling Communications In 5g, Saud Mobark Aldossari Apr 2020

Artificial Intelligence Towards The Wireless Channel Modeling Communications In 5g, Saud Mobark Aldossari

USF Tampa Graduate Theses and Dissertations

Channel prediction is a mathematical predicting of the natural propagation of the signal that helps the receiver to approximate the affected signal, which plays an important role in highly mobile or dynamic channels. The standard wireless communication channel modeling can be facilitated by either deterministic or stochastic channel methodologies. The deterministic approach is based on the electromagnetic theories and every single object in that environment has to be known in that propagation space and an example of this method is ray tracing. While the stochastic modeling method is based on measurements that involve statistical distributions of the channel parameters and …


Predict The Failure Of Hydraulic Pumps By Different Machine Learning Algorithms, Yifei Zhou, Monika Ivantysynova, Nathan Keller Aug 2018

Predict The Failure Of Hydraulic Pumps By Different Machine Learning Algorithms, Yifei Zhou, Monika Ivantysynova, Nathan Keller

The Summer Undergraduate Research Fellowship (SURF) Symposium

Pump failure is a general concerned problem in the hydraulic field. Once happening, it will cause a huge property loss and even the life loss. The common methods to prevent the occurrence of pump failure is by preventative maintenance and breakdown maintenance, however, both of them have significant drawbacks. This research focuses on the axial piston pump and provides a new solution by the prognostic of pump failure using the classification of machine learning. Different kinds of sensors (temperature, acceleration and etc.) were installed into a good condition pump and three different kinds of damaged pumps to measure 10 of …


Prediction Of Solid Oxide Fuel Cell Performance Using Artificial Neural Network, M. A. Rafe Biswas, Kamwana N. Mwara Oct 2017

Prediction Of Solid Oxide Fuel Cell Performance Using Artificial Neural Network, M. A. Rafe Biswas, Kamwana N. Mwara

M. A. Rafe Biswas

NASA’s Johnson Space Center has recently begun efforts to eventually integrate air-independent Solid Oxide Fuel Cell (SOFC) systems, with landers that can be propelled by LOX-CH4, for long duration missions. Using landers that utilize such propellants, provides the opportunity to use SOFCs as a power option, especially since they are able to process methane into a reactant through fuel reformation. Various lead-up activities, such as hardware testing and computational modelling, have been initiated to assist with this developmental effort.
One modeling approach, currently being explored to predict SOFC behavior, involves the usage of artificial neural networks (ANN). Since SOFC performance …


Deep Neural Networks With Confidence Sampling For Electrical Anomaly Detection, Norman L. Tasfi, Wilson A. Higashino, Katarina Grolinger, Miriam A. M. Capretz Jan 2017

Deep Neural Networks With Confidence Sampling For Electrical Anomaly Detection, Norman L. Tasfi, Wilson A. Higashino, Katarina Grolinger, Miriam A. M. Capretz

Electrical and Computer Engineering Publications

The increase in electrical metering has created tremendous quantities of data and, as a result, possibilities for deep insights into energy usage, better energy management, and new ways of energy conservation. As buildings are responsible for a significant portion of overall energy consumption, conservation efforts targeting buildings can provide tremendous effect on energy savings. Building energy monitoring enables identification of anomalous or unexpected behaviors which, when corrected, can lead to energy savings. Although the available data is large, the limited availability of labels makes anomaly detection difficult. This research proposes a deep semi-supervised convolutional neural network with confidence sampling for …


Task Analysis, Modeling, And Automatic Identification Of Elemental Tasks In Robot-Assisted Laparoscopic Surgery, Lavie Pinchas Golenberg Jan 2010

Task Analysis, Modeling, And Automatic Identification Of Elemental Tasks In Robot-Assisted Laparoscopic Surgery, Lavie Pinchas Golenberg

Wayne State University Dissertations

Robotic microsurgery provides many advantages for surgical operations, including tremor filtration, an increase in dexterity, and smaller incisions. There is a growing need for a task analyses on robotic laparoscopic operations to understand better the tasks involved in robotic microsurgery cases. A few research groups have conducted task observations to help systems automatically identify surgeon skill based on task execution. Their gesture analyses, however, lacked depth and their class libraries were composed of ambiguous groupings of gestures that did not share contextual similarities.

A Hierarchical Task Analysis was performed on a four-throw suturing task using a robotic microsurgical platform. Three …


Neural Network Output Feedback Control Of A Quadrotor Uav, Jagannathan Sarangapani, Travis Alan Dierks Dec 2008

Neural Network Output Feedback Control Of A Quadrotor Uav, Jagannathan Sarangapani, Travis Alan Dierks

Electrical and Computer Engineering Faculty Research & Creative Works

A neural network (NN) based output feedback controller for a quadrotor unmanned aerial vehicle (UAV) is proposed. The NNs are utilized in the observer and for generating virtual and actual control inputs, respectively, where the NNs learn the nonlinear dynamics of the UAV online including uncertain nonlinear terms like aerodynamic friction and blade flapping. It is shown using Lyapunov theory that the position, orientation, and velocity tracking errors, the virtual control and observer estimation errors, and the NN weight estimation errors for each NN are all semi-globally uniformly ultimately bounded (SGUUB) in the presence of bounded disturbances and NN functional …


Neural Network Control Of Robot Formations Using Rise Feedback, Jagannathan Sarangapani, Travis Alan Dierks Jan 2007

Neural Network Control Of Robot Formations Using Rise Feedback, Jagannathan Sarangapani, Travis Alan Dierks

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, a combined kinematic/torque control law is developed for leader-follower based formation control using backstepping in order to accommodate the dynamics of the robots and the formation in contrast with kinematic-based formation controllers that are widely reported in the literature. A neural network (NN) is introduced along with robust integral of the sign of the error (RISE) feedback to approximate the dynamics of the follower as well as its leader using online weight tuning. It is shown using Lyapunov theory that the errors for the entire formation are asymptotically stable and the NN weights are bounded as opposed …


An Analysis Of Neutral Drift's Effect On The Evolution Of A Ctrnn Locomotion Controller With Noisy Fitness Evaluation, Gregory Robert Kramer Jan 2007

An Analysis Of Neutral Drift's Effect On The Evolution Of A Ctrnn Locomotion Controller With Noisy Fitness Evaluation, Gregory Robert Kramer

Browse all Theses and Dissertations

This dissertation focuses on the evolution of Continuous Time Recurrent Neural Networks (CTRNNs) as controllers for control systems. Existing research suggests that the process of neutral drift can greatly benefit evolution for problems whose fitness landscapes contain large-scale neutral networks. CTRNNs are known to be highly degenerate, providing a possible source of large-scale landscape neutrality, and existing research suggests that neutral drift benefits the evolution of simple CTRNNs. However, there has been no in-depth examination of the effects of neutral drift on complex CTRNN controllers, especially in the presence of noisy fitness evaluation. To address this problem, this dissertation presents …


Decentralized Discrete-Time Neural Network Controller For A Class Of Nonlinear Systems With Unknown Interconnections, Jagannathan Sarangapani Jan 2005

Decentralized Discrete-Time Neural Network Controller For A Class Of Nonlinear Systems With Unknown Interconnections, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

A novel decentralized neural network (NN) controller in discrete-time is designed for a class of uncertain nonlinear discrete-time systems with unknown interconnections. Neural networks are used to approximate both the uncertain dynamics of the nonlinear systems and the unknown interconnections. Only local signals are needed for the decentralized controller design and the stability of the overall system can be guaranteed using the Lyapunov analysis. Further, controller redesign for the original subsystems is not required when additional subsystems are appended. Simulation results demonstrate the effectiveness of the proposed controller. The NN does not require an offline learning phase and the weights …


Block Phase Correlation-Based Automatic Drift Compensation For Atomic Force Microscopes, Qinmin Yang, Eric W. Bohannan, Jagannathan Sarangapani Jan 2005

Block Phase Correlation-Based Automatic Drift Compensation For Atomic Force Microscopes, Qinmin Yang, Eric W. Bohannan, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

Automatic nanomanipulation and nanofabrication with an Atomic Force Microscope (AFM) is a precursor for nanomanufacturing. In ambient conditions without stringent environmental controls, nanomanipulation tasks require extensive human intervention to compensate for the many spatial uncertainties of the AFM. Among these uncertainties, thermal drift is especially hard to solve because it tends to increase with time and cannot be compensated simultaneously by feedback. In this paper, an automatic compensation scheme is introduced to measure and estimate drift. This information can be subsequently utilized to compensate for the thermal drift so that a real-time controller for nanomanipulation can be designed as if …