Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Computer Sciences

Cybersecurity

Wayne State University

Publication Year

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Actuator Cyberattack Handling Using Lyapunov-Based Economic Model Predictive Control, Keshav Kasturi Rangan, Henrique Oyama, Helen Durand Jun 2022

Actuator Cyberattack Handling Using Lyapunov-Based Economic Model Predictive Control, Keshav Kasturi Rangan, Henrique Oyama, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

Cybersecurity has gained increasing interest as a consequence of the potential impacts of cyberattacks on profits and safety. While attacks can affect various components of a plant, prior work from our group has focused on the impact of cyberattacks on control components such as process sensors and actuators and the development of detection strategies for cybersecurity derived from control theory. In this work, we provide greater focus on actuator attacks; specifically, we extend a detection and control strategy previously applied for sensor attacks and based on an optimization-based control technique called Lyapunov-based economic model predictive control (LEMPC) to detect attacks …


Quantum Computing And Resilient Design Perspectives For Cybersecurity Of Feedback Systems, Keshav Kasturi Rangan, Jihan Abou Halloun, Henrique Oyama, Samantha Cherney, Ilham Azali Assoumani, Nazir Jairazbhoy, Helen Durand, Simon Ka Ng Jun 2022

Quantum Computing And Resilient Design Perspectives For Cybersecurity Of Feedback Systems, Keshav Kasturi Rangan, Jihan Abou Halloun, Henrique Oyama, Samantha Cherney, Ilham Azali Assoumani, Nazir Jairazbhoy, Helen Durand, Simon Ka Ng

Chemical Engineering and Materials Science Faculty Research Publications

Cybersecurity of control systems is an important issue in next-generation manufac- turing that can impact both operational objectives (safety and performance) as well as process designs (via hazard analysis). Cyberattacks differ from faults in that they can be coordinated efforts to exploit system vulnerabilities to create otherwise unlikely hazard scenarios. Because coordination and targeted process manipulation can be characteristics of attacks, some of the tactics previously analyzed in our group from a control system cybersecurity perspective have incorporated randomness to attempt to thwart attacks. The underlying assumption for the generation of this randomness has been that it can be achieved …


Mitigating Safety Concerns And Profit/Production Losses For Chemical Process Control Systems Under Cyberattacks Via Design/Control Methods, Helen Durand, Matthew Wegener Apr 2020

Mitigating Safety Concerns And Profit/Production Losses For Chemical Process Control Systems Under Cyberattacks Via Design/Control Methods, Helen Durand, Matthew Wegener

Chemical Engineering and Materials Science Faculty Research Publications

One of the challenges for chemical processes today, from a safety and profit standpoint, is the potential that cyberattacks could be performed on components of process control systems. Safety issues could be catastrophic; however, because the nonlinear systems definition of a cyberattack has similarities to a nonlinear systems definition of faults, many processes have already been instrumented to handle various problematic input conditions. Also challenging is the question of how to design a system that is resilient to attacks attempting to impact the production volumes or profits of a company. In this work, we explore a process/equipment design framework for …


Process/Equipment Design Implications For Control System Cybersecurity, Helen Durand Jul 2019

Process/Equipment Design Implications For Control System Cybersecurity, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

An emerging challenge for process safety is process control system cybersecurity. An attacker could gain control of the process actuators through the control system or communication policies within control loops and potentially drive the process state to unsafe conditions. Cybersecurity has traditionally been handled as an information technology (IT) problem in the process industries. In the literature for cybersecurity specifically of control systems, there has been work aimed at developing control designs that seek to fight cyberattacks by either giving the system appropriate response mechanisms once attacks are detected or seeking to make the attacks difficult to perform. In this …


A Nonlinear Systems Framework For Cyberattack Prevention For Chemical Process Control Systems, Helen Durand Sep 2018

A Nonlinear Systems Framework For Cyberattack Prevention For Chemical Process Control Systems, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

Recent cyberattacks against industrial control systems highlight the criticality of preventing future attacks from disrupting plants economically or, more critically, from impacting plant safety. This work develops a nonlinear systems framework for understanding cyberattack-resilience of process and control designs and indicates through an analysis of three control designs how control laws can be inspected for this property. A chemical process example illustrates that control approaches intended for cyberattack prevention which seem intuitive are not cyberattack-resilient unless they meet the requirements of a nonlinear systems description of this property.


State Measurement Spoofing Prevention Through Model Predictive Control Design, Helen Durand Aug 2018

State Measurement Spoofing Prevention Through Model Predictive Control Design, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

Security of chemical process control systems against cyberattacks is critical due to the potential for injuries and loss of life when chemical process systems fail. A potential means by which process control systems may be attacked is through the manipulation of the measurements received by the controller. One approach for addressing this is to design controllers that make manipulating the measurements received by the controller in any meaningful fashion very difficult, making the controllers a less attractive target for a cyberattack of this type. In this work, we develop a model predictive control (MPC) implementation strategy that incorporates Lyapunov-based stability …