Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Civil Engineering

Electronic Theses and Dissertations

Durability

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Design And Predicting Performance Of Carbon Nanotube Reinforced Cementitious Materials : Mechanical Properties And Dispersion Characteristics., Mahyar Ramezani Aug 2019

Design And Predicting Performance Of Carbon Nanotube Reinforced Cementitious Materials : Mechanical Properties And Dispersion Characteristics., Mahyar Ramezani

Electronic Theses and Dissertations

Recently, Carbon Nanotubes (CNTs) are drawing considerable attention of researchers for reinforcing cementitious materials due to their excellent mechanical properties and high aspect ratio (length-to-diameter ratio). However, CNTs might not disperse well within the cement matrix, resulting in little improvement or even degradation of concrete properties. The uncertainty in producing the consistent results in different studies might be attributed to multiple interactions between the experimental variables affecting the nanotube dispersion and the final properties of CNT-cement nanocomposites. Therefore, this research mainly focused on proposing equations that can reliably capture these interactions in order to correlate CNT dispersion with the mechanical …


Experimental And Numerical Investigations On Bond Durability Of Cfrp Strengthened Concrete Members Subjected To Environmental Exposure, Haider Al-Jelawy Jan 2013

Experimental And Numerical Investigations On Bond Durability Of Cfrp Strengthened Concrete Members Subjected To Environmental Exposure, Haider Al-Jelawy

Electronic Theses and Dissertations

Fiber reinforced polymer (FRP) composites have become an attractive alternative to conventional methods for external-strengthening of civil infrastructure, particularly as applied to flexural strengthening of reinforced concrete (RC) members. However, durability of the bond between FRP composite and concrete has shown degradation under some aggressive environments. Although numerous studies have been conducted on concrete members strengthened with FRP composites, most of those studies have focused on the degradation of FRP material itself, relatively few on bond behavior under repeated mechanical and environmental loading. This thesis investigates bond durability under accelerated environmental conditioning of two FRP systems commonly employed in civil …


On The Use Of Polyurethane Matrix Carbon Fiber Composites For Strengthening Concrete Structures, Zachary Haber Jan 2010

On The Use Of Polyurethane Matrix Carbon Fiber Composites For Strengthening Concrete Structures, Zachary Haber

Electronic Theses and Dissertations

Fiber-reinforced polymer (FRP) composite materials have effectively been used in numerous reinforced concrete civil infrastructure strengthening projects. Although a significant body of knowledge has been established for epoxy matrix carbon FRPs and epoxy adhesives, there is still a need to investigate other matrices and adhesive types. One such matrix/adhesive type yet to be heavily researched for infrastructure application is polyurethane. This thesis investigates use of polyurethane matrix carbon fiber composites for strengthening reinforced concrete civil infrastructure. Investigations on mirco- and macro-mechanical composite performance, strengthened member flexural performance, and bond durability under environmental conditioning will be presented. Results indicate that polyurethane …


Flexural Mechanical Durability Of Concrete Beams Strengthened By Externally Bonded Carbon Fiber Reinforced Polymer Sheets, Michael Olka Jan 2009

Flexural Mechanical Durability Of Concrete Beams Strengthened By Externally Bonded Carbon Fiber Reinforced Polymer Sheets, Michael Olka

Electronic Theses and Dissertations

About 77,600 bridges throughout the United States in the Federal Highway Association (FHWA) bridge database are listed as structurally deficient. This has created a need to either replace or strengthen bridges quickly and efficiently. Due to high costs for total replacement of deficient bridges, strengthening of existing bridges is a more economical alternative. A technique that has been developing over the past two decades is the strengthening of bridges using carbon fiber reinforced polymer (CFRP) sheets. The CFRP sheets are attached to the bottom of the bridge girders using structural adhesives so that the CFRP becomes an integral part of …