Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Other

University of Texas at Arlington

Moisture absorption

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Moisture Content Prediction In Polymer Composites Using Machine Learning Techniques, Partha Pratim Das, Monjur Morshed Rabby, Vamsee Vadlamudi, Rassel Raihan Jan 2022

Moisture Content Prediction In Polymer Composites Using Machine Learning Techniques, Partha Pratim Das, Monjur Morshed Rabby, Vamsee Vadlamudi, Rassel Raihan

Institute of Predictive Performance Methodologies (IPPM-UTARI)

The principal objective of this study is to employ non-destructive broadband dielectric spectroscopy/impedance spectroscopy and machine learning techniques to estimate the moisture content in FRP composites under hygrothermal aging. Here, classification and regression machine learning models that can accurately predict the current moisture saturation state are developed using the frequency domain dielectric response of the composite, in conjunction with the time domain hygrothermal aging effect. First, to categorize the composites based on the present state of the absorbed moisture supervised classification learning models (i.e., quadratic discriminant analysis (QDA), support vector machine (SVM), and artificial neural network-based multilayer perceptron (MLP) classifier) …


Dielectric State Variables As Qualitative Indicators Of Moisture Absorption-Caused Mechanical Property Degradation In Gfrp Composite Structures, Partha Pratim Das, Vamsee Vadlamudi, Rassel Raihan Jan 2022

Dielectric State Variables As Qualitative Indicators Of Moisture Absorption-Caused Mechanical Property Degradation In Gfrp Composite Structures, Partha Pratim Das, Vamsee Vadlamudi, Rassel Raihan

Institute of Predictive Performance Methodologies (IPPM-UTARI)

Fiber reinforced polymer (FRP) composites are being used in numerous fields owing to their intrinsic strength to weight ratio and various design benefits. However, these materials are prone to environmental aging, particularly moisture absorption. In essence, absorbed moisture infiltrates the polymer matrix and induces changes in the polymer network through chain scission, plasticization, and other bonding interactions. This causes irreversible damages to the material and significantly decreases mechanical strength. In this study, Broadband Dielectric Spectroscopy (BbDS) has been used to identify the absorption mechanisms in glass fiber reinforced polymer (GFRP) composites by detecting the related polarization mechanisms. Here, results show …


Coupled Effects In Dielectric And Thermal Properties Of Polymer Matrix Composite Structures Due To Moisture Absorption, Partha Pratim Das, Monjur Morshed Rabby, Vamsee Vadlamudi, Kenneth Reifsnider, Rassel Raihan Jan 2022

Coupled Effects In Dielectric And Thermal Properties Of Polymer Matrix Composite Structures Due To Moisture Absorption, Partha Pratim Das, Monjur Morshed Rabby, Vamsee Vadlamudi, Kenneth Reifsnider, Rassel Raihan

Institute of Predictive Performance Methodologies (IPPM-UTARI)

Fiber reinforced polymer (FRP) composites are being used in number of fields including aerospace, marine, sports, medical, power sectors, etc. due to their lightweight nature while retaining high mechanical performance in terms of high specific strength, stiffness, and great fatigue properties. However, the applicability of these materials is restricted by their stability up to a certain temperature (i.e. glass transition temperature) and environmental degradation (i.e. moisture, UV light, etc.). Moisture ingression greatly reduces their mechanical properties altering material structure by causing polymer plasticization, chain scission and fiber-polymer interface deterioration. These changes instantaneously affect the thermal properties of the materials which …