Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Performance Of Solid Oxide Iron-Air Battery Operated At 550°C, Xuan Zhao, Yunhui Gong, Xue Li, Nansheng Xu, Kevin Huang Feb 2015

Performance Of Solid Oxide Iron-Air Battery Operated At 550°C, Xuan Zhao, Yunhui Gong, Xue Li, Nansheng Xu, Kevin Huang

Kevin Huang

“Metal-air” batteries have garnered much attention in recent years due to their high intrinsic specific energy and use of inexhaustible and storage-free oxygen source -air- for the “metal-oxygen” reaction. In this study, we report theperformance of a new type of all solid-state “iron-air” battery operated at 550°C. The results show that CeO2 nanoparticles incorporated into the Fe-Fe3O4 redox-couple can improve the specific energy (Wh/kg) and round trip efficiency by 15% and 29%, respectively, over the baseline Fe-Fe3O4 battery. Use of supported Fe-Fe3O4 nanoparticles as the redox couple can increase the specific energy and round-trip efficiency by 13% and 48% over …


Mle+: A Tool For Integrated Design And Deployment Of Energy Efficient Building Controls, Willy Bernal, Madhur Behl, Truong Nghiem, Rahul Mangharam Jan 2013

Mle+: A Tool For Integrated Design And Deployment Of Energy Efficient Building Controls, Willy Bernal, Madhur Behl, Truong Nghiem, Rahul Mangharam

Truong X Nghiem

We present MLE+, a tool for energy-efficient building automation design, co-simulation and analysis. The tool leverages the high-fidelity building simulation capabilities of EnergyPlus and the scientific computation and design capabilities of Matlab for controller design. MLE+ facilitates integrated building simulation and controller formulation with integrated support for system identification, control design, optimization, simulation analysis and communication between software applications and building equipment. It provides streamlined workflows, a graphical front-end, and debugging support to help control engineers eliminate design and programming errors and take informed decisions early in the design stage, leading to fewer iterations in the building automation development cycle. …


Superconducting Magnetic Energy Storage Systems For Power System Applications, Danny Soetanto, K.W.E Cheng Dec 2012

Superconducting Magnetic Energy Storage Systems For Power System Applications, Danny Soetanto, K.W.E Cheng

Professor Darmawan Sutanto

Advancement in both superconducting technologies and power electronics led to High Temperature Superconducting Magnetic Energy Storage Systems (SMES) having some excellent performances for use in power systems, such as rapid response (millisecond), high power (multi-MW), high efficiency, and four- quadrant control. This paper provides a review on SMES applications to power systems.


Improved Controller For High Temperature Super Conducting Magnetic Energy Storage (Hts-Smes), Danny Soetanto, M Aware Dec 2012

Improved Controller For High Temperature Super Conducting Magnetic Energy Storage (Hts-Smes), Danny Soetanto, M Aware

Professor Darmawan Sutanto

This paper describes a novel controller for a High Temperature Superconducting Magnetic Energy Storage (HTSSMES) that can ensure (a) fast return of energy to the superconducting coil under constant current mode and (b) a constant and sinusoidal input supply current irrespective of the varying load demand with and without harmonics. A special feature of this controller is its ability to smoothly charge the superconducting coil using constant current charging so that it can be ready for the next discharging operation as soon as possible. Analysis of the circuit operation under hysteresis control is presented in details. Simulation and experimental results …


Monte Carlo Study Of The Energy Response And Depth Dose Water Equivalence Of The Moskin Radiation Dosimeter At Clinical Kilovoltage Photon Energies, C Lian, M Othman, D Cutajar, M Butson, Susanna Guatelli, Anatoly Rosenfeld Dec 2012

Monte Carlo Study Of The Energy Response And Depth Dose Water Equivalence Of The Moskin Radiation Dosimeter At Clinical Kilovoltage Photon Energies, C Lian, M Othman, D Cutajar, M Butson, Susanna Guatelli, Anatoly Rosenfeld

Susanna Guatelli

Skin dose is often the quantity of interest for radiological protection, as the skin is the organ that receives maximum dose during kilovoltage X-ray irradiations. The purpose of this study was to simulate the energy response and the depth dose water equivalence of the MOSkin radiation detector (Centre for Medical Radiation Physics (CMRP), University of Wollongong, Australia), a MOSFET-based radiation sensor with a novel packaging design, at clinical kilovoltage photon energies typically used for superficial/orthovoltage therapy and X-ray CT imaging. Monte Carlo simulations by means of the Geant4 toolkit were employed to investigate the energy response of the CMRP MOSkin …


Effect Of A Magnetic Field On The Track Structure Of Low-Energy Electrons: A Monte Carlo Study, M Bug, E Gargioni, Susanna Guatelli, S Incerti, H Rabus, R Schulte, Anatoly Rosenfeld Dec 2012

Effect Of A Magnetic Field On The Track Structure Of Low-Energy Electrons: A Monte Carlo Study, M Bug, E Gargioni, Susanna Guatelli, S Incerti, H Rabus, R Schulte, Anatoly Rosenfeld

Susanna Guatelli

The increasing use of MRI-guided radiation therapy evokes the necessity to investigate the potential impact of a magnetic field on the biological effectiveness of therapeutic radiation beams. While it is known that a magnetic field, applied during irradiation, can improve the macroscopic absorbed dose distribution of electrons in the tumor region, effects on the microscopic distribution of energy depositions and ionizations have not yet been investigated. An effect on the number of ionizations in a DNA segment, which is related to initial DNA damage in form of complex strand breaks, could be beneficial in radiation therapy. In this work we …


Monte Carlo Study Of Mosfet Packaging, Optimised For Improved Energy Response: Single Mosfet Filtration, M Othman, D Cutajar, Nicholas Hardcastle, S Guatelli, Anatoly Rosenfeld Dec 2012

Monte Carlo Study Of Mosfet Packaging, Optimised For Improved Energy Response: Single Mosfet Filtration, M Othman, D Cutajar, Nicholas Hardcastle, S Guatelli, Anatoly Rosenfeld

Susanna Guatelli

Monte Carlo simulations of the energy response of a conventionally packaged single metal-oxide field effect transistors (MOSFET) detector were performed with the goal of improving MOSFET energy dependence for personal accident or military dosimetry. The MOSFET detector packaging was optimised. Two different ‘drop-in’ design packages for a single MOSFET detector were modelled and optimised using the GEANT4 Monte Carlo toolkit. Absorbed photon dose simulations of the MOSFET dosemeter placed in free-air response, corresponding to the absorbed doses at depths of 0.07 mm (Dw(0.07)) and 10 mm (Dw(10)) in a water equivalent phantom of size 30 x 30 x30 cm3 for …


Monte Carlo Study Of The Energy Response And Depth Dose Water Equivalence Of The Moskin Radiation Dosimeter At Clinical Kilovoltage Photon Energies, C Lian, M Othman, D Cutajar, M Butson, Susanna Guatelli, Anatoly Rosenfeld Nov 2012

Monte Carlo Study Of The Energy Response And Depth Dose Water Equivalence Of The Moskin Radiation Dosimeter At Clinical Kilovoltage Photon Energies, C Lian, M Othman, D Cutajar, M Butson, Susanna Guatelli, Anatoly Rosenfeld

Dean Cutajar

Skin dose is often the quantity of interest for radiological protection, as the skin is the organ that receives maximum dose during kilovoltage X-ray irradiations. The purpose of this study was to simulate the energy response and the depth dose water equivalence of the MOSkin radiation detector (Centre for Medical Radiation Physics (CMRP), University of Wollongong, Australia), a MOSFET-based radiation sensor with a novel packaging design, at clinical kilovoltage photon energies typically used for superficial/orthovoltage therapy and X-ray CT imaging. Monte Carlo simulations by means of the Geant4 toolkit were employed to investigate the energy response of the CMRP MOSkin …


Monte Carlo Study Of Mosfet Packaging, Optimised For Improved Energy Response: Single Mosfet Filtration, M Othman, D Cutajar, Nicholas Hardcastle, S Guatelli, Anatoly Rosenfeld Jan 2012

Monte Carlo Study Of Mosfet Packaging, Optimised For Improved Energy Response: Single Mosfet Filtration, M Othman, D Cutajar, Nicholas Hardcastle, S Guatelli, Anatoly Rosenfeld

Dean Cutajar

Monte Carlo simulations of the energy response of a conventionally packaged single metal-oxide field effect transistors (MOSFET) detector were performed with the goal of improving MOSFET energy dependence for personal accident or military dosimetry. The MOSFET detector packaging was optimised. Two different ‘drop-in’ design packages for a single MOSFET detector were modelled and optimised using the GEANT4 Monte Carlo toolkit. Absorbed photon dose simulations of the MOSFET dosemeter placed in free-air response, corresponding to the absorbed doses at depths of 0.07 mm (Dw(0.07)) and 10 mm (Dw(10)) in a water equivalent phantom of size 30 x 30 x30 cm3 for …