Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 22 of 22

Full-Text Articles in Engineering

Bi-Directional Vector Variable Gain Amplifier For An X-Band Phased Array Radar Application, Arash Mashayekhi Jan 2014

Bi-Directional Vector Variable Gain Amplifier For An X-Band Phased Array Radar Application, Arash Mashayekhi

Masters Theses 1911 - February 2014

This thesis presents the design, layout, and measurements of a bi-directional amplifier with variable vector (in-phase / quadrature) gain control that will be part of an electronically steered phased array system. The electronically steered phased array has many advantages over the conventional mechanically steered antennas including rapid scanning of the beam and adaptively creating nulls in desired locations. The 10-bit bi-directional Vector Variable Gain Amplifier (VVGA) is part of the transmit and receive module of each antenna element where transmit and receive functionality is determined through a simple switch. The VVGA performs amplification of the IF IQ pair by an …


Testing And Validation Of A Prototype Gpgpu Design For Fpgas, Murtaza Merchant Jan 2013

Testing And Validation Of A Prototype Gpgpu Design For Fpgas, Murtaza Merchant

Masters Theses 1911 - February 2014

Due to their suitability for highly parallel and pipelined computation, field programmable gate arrays (FPGAs) and general-purpose graphics processing units (GPGPUs) have emerged as top contenders for hardware acceleration of high-performance computing applications. FPGAs are highly specialized devices that can be customized to a specific application, whereas GPGPUs are made of a fixed array of multiprocessors with a rigid architectural model. To alleviate this rigidity as well as to combine some other benefits of the two platforms, it is desirable to explore the implementation of a flexible GPGPU (soft GPGPU) using the reconfigurable fabric found in an FPGA. This thesis …


Low Cost Dynamic Architecture Adaptation Schemes For Drowsy Cache Management, Nitin Prakash Jan 2013

Low Cost Dynamic Architecture Adaptation Schemes For Drowsy Cache Management, Nitin Prakash

Masters Theses 1911 - February 2014

Energy consumption and speed of execution have long been recognized as conflicting requirements for processor design. In this work, we have developed a low-cost dynamic architecture adaptation scheme to save leakage power in caches. This design uses voltage scaling to implement drowsy caches. The importance of a dynamic scheme for managing drowsy caches, arises from the fact that not only does cache behavior change from one application to the next, but also during different phases of execution within the same application. We discuss various implementations of our scheme that provide a tradeoff between granularity of control and design complexity. …


Protecting Network Processors With High Performance Logic Based Monitors, Harikrishnan Kumarapillai Chandrikakutty Jan 2013

Protecting Network Processors With High Performance Logic Based Monitors, Harikrishnan Kumarapillai Chandrikakutty

Masters Theses 1911 - February 2014

Technological advancements have transformed the way people interact with the world. The Internet now forms a critical infrastructure that links different aspects of our life like personal communication, business transactions, social networking, and advertising. In order to cater to this ever increasing communication overhead there has been a fundamental shift in the network infrastructure. Modern network routers often employ software programmable network processors instead of ASIC-based technology for higher throughput performance and adaptability to changing resource requirements. This programmability makes networking infrastructure vulnerable to new class of network attacks by compromising the software on network processors. This issue has resulted …


A Novel Reconfiguration Scheme In Quantum-Dot Cellular Automata For Energy Efficient Nanocomputing, Madhusudan Chilakam Jan 2013

A Novel Reconfiguration Scheme In Quantum-Dot Cellular Automata For Energy Efficient Nanocomputing, Madhusudan Chilakam

Masters Theses 1911 - February 2014

Quantum-Dot Cellular Automata (QCA) is currently being investigated as an alternative to CMOS technology. There has been extensive study on a wide range of circuits from simple logical circuits such as adders to complex circuits such as 4-bit processors. At the same time, little if any work has been done in considering the possibility of reconfiguration to reduce power in QCA devices. This work presents one of the first such efforts when considering reconfigurable QCA architectures which are expected to be both robust and power efficient. We present a new reconfiguration scheme which is highly robust and is expected to …


Parameter Variation Sensing And Estimation In Nanoscale Fabrics, Jianfeng Zhang Jan 2013

Parameter Variation Sensing And Estimation In Nanoscale Fabrics, Jianfeng Zhang

Masters Theses 1911 - February 2014

Parameter variations introduced by manufacturing imprecision are becoming more influential on circuit performance. This is especially the case in emerging nanoscale fabrics due to unconventional manufacturing steps (e.g., nano-imprint) and aggressive scaling. These parameter variations can lead to performance deterioration and consequently yield loss.

Parameter variations are typically addressed pre-fabrication with circuit design targeting worst-case timing scenarios. However, this approach is pessimistic and much of performance benefits can be lost. By contrast, if parameter variations can be estimated post-manufacturing, adaptive techniques or reconfiguration could be used to provide more optimal level of tolerance. To estimate parameter variations during run-time, on-chip …


An Interconnection Network Topology Generation Scheme For Multicore Systems, Bharath Phanibhushana Jan 2013

An Interconnection Network Topology Generation Scheme For Multicore Systems, Bharath Phanibhushana

Masters Theses 1911 - February 2014

Multi-Processor System on Chip (MPSoC) consisting of multiple processing cores connected via a Network on Chip (NoC) has gained prominence over the last decade. Most common way of mapping applications to MPSoCs is by dividing the application into small tasks and representing them in the form of a task graph where the edges connecting the tasks represent the inter task communication. Task scheduling involves mapping task to processor cores so as to meet a specified deadline for the application/task graph. With increase in system complexity and application parallelism, task communication times are tending towards task execution times. Hence the NoC …


N3asics: Designing Nanofabrics With Fine-Grained Cmos Integration, Pavan Panchapakeshan Jan 2012

N3asics: Designing Nanofabrics With Fine-Grained Cmos Integration, Pavan Panchapakeshan

Masters Theses 1911 - February 2014

Nanoscale-computing fabrics based on novel materials such as semiconductor nanowires, carbon nanotubes, graphene, etc. have been proposed in recent years. These fabrics employ unconventional manufacturing techniques like Nano-imprint lithography or Super-lattice Nanowire Pattern Transfer to produce ultra-dense nano-structures. However, one key challenge that has received limited attention is the interfacing of unconventional/self-assembly based approaches with conventional CMOS manufacturing to build integrated systems.

We propose a novel nanofabric approach that mixes unconventional nanomanufacturing with CMOS manufacturing flow and design rules to build a reliable nanowire-CMOS 3-D integrated fabric called N3ASICs with no new manufacturing constraints. In N3ASICs …


Secure And Energy Efficient Physical Unclonable Functions, Sudheendra Srivathsa Jan 2012

Secure And Energy Efficient Physical Unclonable Functions, Sudheendra Srivathsa

Masters Theses 1911 - February 2014

Physical Unclonable Functions are a unique class of circuits that leverage the inherentvariations in manufacturing process to create unique,unclonableIDs and secret keys.The distinguishing feature of PUFs is that even an untrusted foundry cannot create a copy of the circuit as it is impossible to control the manufacturing process variations.PUFs can operate reliably in presence of voltage and temperature variations. In thisthesis, weexplorethe security offered by PUFs and tradeoffs between different metrics such as uniqueness, reliability and energy consumption.Benefits of sub-threshold PUF operation and the use of delay based Arbiter PUFs and ring oscillator PUFs in low power applications is evaluated. …


A Study Of The Impact Of Computational Delays In Missile Interception Systems, Ye Xu Jan 2012

A Study Of The Impact Of Computational Delays In Missile Interception Systems, Ye Xu

Masters Theses 1911 - February 2014

Most publications discussing missile interception systems assume a zero computer response time. This thesis studies the impact of computer response time on single-missile single-target and multiple- missile multiple-target systems. Simulation results for the final miss distance as the computer response time increases are presented. A simple online cooperative adjustment model for multiple-missile multiple-target system is created for the purpose of studying the computer delay effect.


Critical Area Driven Dummy Fill Insertion To Improve Manufacturing Yield, Nishant Dhumane Jan 2012

Critical Area Driven Dummy Fill Insertion To Improve Manufacturing Yield, Nishant Dhumane

Masters Theses 1911 - February 2014

Non-planar surface may cause incorrect transfer of patterns during lithography. In today’s IC manufacturing, chemical mechanical polishing (CMP) is used for topographical planarization. Since polish rates for metals and oxides are different, dummy metal fills in layout is used to minimize post-CMP thickness variability. Traditional metal fill solutions focus on satisfying density target determined by layout density analysis techniques. These solutions may potentially reduce yield by increasing probability of failure (POF) due to particulate defects and also impact design performance. Layout design solutions that minimize POF and also improve surface planarity via dummy fill insertions have competing requirements for line …


Towards Logic Functions As The Device Using Spin Wave Functions Nanofabric, Prasad Shabadi Jan 2012

Towards Logic Functions As The Device Using Spin Wave Functions Nanofabric, Prasad Shabadi

Masters Theses 1911 - February 2014

As CMOS technology scaling is fast approaching its fundamental limits, several new nano-electronic devices have been proposed as possible alternatives to MOSFETs. Research on emerging devices mainly focusses on improving the intrinsic characteristics of these single devices keeping the overall integration approach fairly conventional. However, due to high logic complexity and wiring requirements, the overall system-level power, performance and area do not scale proportional to that of individual devices.

Thereby, we propose a fundamental shift in mindset, to make the devices themselves more functional than simple switches. Our goal in this thesis is to develop a new nanoscale fabric paradigm …


A Theoretical Approach To Fault Analysis And Mitigation In Nanoscale Fabrics, Md Muwyid Uzzaman Khan Jan 2012

A Theoretical Approach To Fault Analysis And Mitigation In Nanoscale Fabrics, Md Muwyid Uzzaman Khan

Masters Theses 1911 - February 2014

High defect rates are associated with novel nanodevice-based systems owing to unconventional and self-assembly based manufacturing processes. Furthermore, in emerging nanosystems, fault mechanisms and distributions may be very different from CMOS due to unique physical layer aspects, and emerging circuit and logic styles. Thus, theoretical fault models for nanosystems are necessary to extract detailed characteristics of fault generation and propagation. Using the intuition garnered from the theoretical analysis, modular and structural redundancy schemes can be specifically tailored to the intricacies of the fabric in order to achieve higher reliability of output signals.

In this thesis, we develop a detailed analytical …


Design Of An Fpga-Based Array Formatter For Casa Phase-Tilt Radar System, Akilesh Krishnamurthy Jan 2011

Design Of An Fpga-Based Array Formatter For Casa Phase-Tilt Radar System, Akilesh Krishnamurthy

Masters Theses 1911 - February 2014

Weather monitoring and forecasting systems have witnessed rapid advancement in recent years. However, one of the main challenges faced by these systems is poor coverage in lower atmospheric regions due to earth's curvature. The Engineering Research Center for the Collaborative Adaptive Sensing of the Atmosphere (CASA) has developed a dense network of small low-power radars to improve the coverage of weather sensing systems. Traditional, mechanically-scanned antennas used in these radars are now being replaced with high-performance electronically-scanned phased-arrays. Phased-Array radars, however, require large number of active microwave components to scan electronically in both the azimuth and elevation planes, thus significantly …


Robust Signaling Techniques For Through Silicon Via Bundles, Krishna Chaitanya Chillara Jan 2011

Robust Signaling Techniques For Through Silicon Via Bundles, Krishna Chaitanya Chillara

Masters Theses 1911 - February 2014

3D circuit integration is becoming increasingly important as one of the remaining techniques for staying on Moore’s law trajectory. 3D Integrated Circuits (ICs) can be realized using the Through Silicon Via (TSV) approach. In order to extract the full benefits of 3D and for better yield, it has been suggested that the TSVs should be arranged as bundles rather than parallel TSVs. TSVs are required to route the signals through different dies in a multi-tier 3D IC. TSVs are excellent but scarce electrical conductors. Hence, it is important to utilize these resources very efficiently.

In high performance 3D ICs, signaling …


Electromagnetic Side-Channel Analysis For Hardware And Software Watermarking, Ashwin Lakshminarasimhan Jan 2011

Electromagnetic Side-Channel Analysis For Hardware And Software Watermarking, Ashwin Lakshminarasimhan

Masters Theses 1911 - February 2014

With more and more ICs being used in sectors requiring confidentiality and integrity like payment systems, military, finance and health, there is a lot of concern in the security and privacy of ICs. The widespread adoption of Intellectual Property (IP) based designs for modern systems like system on chips has reduced the time to market and saved a lot of money for many companies. But this has also opened the gates for problems like product piracy, IP theft and fraud. It is estimated that billions of dollars are lost annually to illegal manufacturing of Integrated Circuits. A possible solution to …


On Process Variation Tolerant Low Cost Thermal Sensor Design, Spandana Remarsu Jan 2011

On Process Variation Tolerant Low Cost Thermal Sensor Design, Spandana Remarsu

Masters Theses 1911 - February 2014

Thermal management has emerged as an important design issue in a range of designs from portable devices to server systems. Internal thermal sensors are an integral part of such a management system. Process variations in CMOS circuits cause accuracy problems for thermal sensors which can be fixed by calibration tables. Stand-alone thermal sensors are calibrated to fix such problems. However, calibration requires going through temperature steps in a tester, increasing test application time and cost. Consequently, calibrating thermal sensors in typical digital designs including mainstream desktop and notebook processors increases the cost of the processor. This creates a need for …


Enhanced Search And Efficient Storage Using Data Compression In Nand Flash Memories, Shruti S. Vyas Jan 2011

Enhanced Search And Efficient Storage Using Data Compression In Nand Flash Memories, Shruti S. Vyas

Masters Theses 1911 - February 2014

NAND flash memories are popular due to their density and lower cost. However, due to serial access, NAND flash memories have low read and write speeds. As the flash sizes increase to 64GB and beyond, searches through flash memories become painfully slow. In this work we present a hardware design enhancement technique to speed-up search through flash memories. The basic idea is to generate a small signature for every memory block and store them in a signature block(s). When a search is initiated, signature block is searched which produces reference of possible blocks where data might be contained, reducing the …


Testable Clock Distributions For 3d Integrated Circuits, Michael T. Buttrick Jan 2011

Testable Clock Distributions For 3d Integrated Circuits, Michael T. Buttrick

Masters Theses 1911 - February 2014

The 3D integration of dies promises to address the problem of increased die size caused by the slowing of scaling. By partitioning a design among two or more dies and stacking them vertically, the average interconnect length is greatly decreased and thus power is reduced. Also, since smaller dies will have a higher yield, 3D integration will reduce manufacturing costs. However, this increase in yield can only be seen if manufactured dies can be tested before they are stacked. If not, the overall yield for the die stack will be worse than that of the single, larger die.

One of …


Approaches To Multiprocessor Error Recovery Using An On-Chip Interconnect Subsystem, Ramakrishna P. Vadlamani Jan 2010

Approaches To Multiprocessor Error Recovery Using An On-Chip Interconnect Subsystem, Ramakrishna P. Vadlamani

Masters Theses 1911 - February 2014

For future multicores, a dedicated interconnect subsystem for on-chip monitors was found to be highly beneficial in terms of scalability, performance and area. In this thesis, such a monitor network (MNoC) is used for multicores to support selective error identification and recovery and maintain target chip reliability in the context of dynamic voltage and frequency scaling (DVFS). A selective shared memory multiprocessor recovery is performed using MNoC in which, when an error is detected, only the group of processors sharing an application with the affected processors are recovered. Although the use of DVFS in contemporary multicores provides significant protection from …


Scalable, Memory-Intensive Scientific Computing On Field Programmable Gate Arrays, Salma Mirza Jan 2010

Scalable, Memory-Intensive Scientific Computing On Field Programmable Gate Arrays, Salma Mirza

Masters Theses 1911 - February 2014

Cache-based, general purpose CPUs perform at a small fraction of their maximum floating point performance when executing memory-intensive simulations, such as those required for many scientific computing problems. This is due to the memory bottleneck that is encountered with large arrays that must be stored in dynamic RAM. A system of FPGAs, with a large enough memory bandwidth, and clocked at only hundreds of MHz can outperform a CPU clocked at GHz in terms of floating point performance. An FPGA core designed for a target performance that does not unnecessarily exceed the memory imposed bottleneck can then be distributed, along …


Application Specific Customization And Scalability Of Soft Multiprocessors, Deepak C. Unnikrishnan Jan 2009

Application Specific Customization And Scalability Of Soft Multiprocessors, Deepak C. Unnikrishnan

Masters Theses 1911 - February 2014

Soft multiprocessor systems exploit the plentiful computational resources available in field programmable devices. By virtue of their adaptability and ability to support coarse grained parallelism, they serve as excellent platforms for rapid prototyping and design space exploration of embedded multiprocessor applications. As complex applications emerge, careful mapping, processor and interconnect customization are critical to the overall performance of the multiprocessor system. In this thesis, we have developed an automated scalable framework to efficiently map applications written in a high-level programmer-friendly language to customizable soft-cores. The framework allows the user to specify the application in a high-level language called Streamit. After …