Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Thermodynamics

Mathematical Sciences Faculty Research

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Thermodynamics Of Concentrated Solid Solution Alloys, Michael C. Gao, Chuan Zhang, Pan Gao, Fan Zhang, Lizhi Ouyang, Michael Widom, Jeffrey A. Hawk Oct 2017

Thermodynamics Of Concentrated Solid Solution Alloys, Michael C. Gao, Chuan Zhang, Pan Gao, Fan Zhang, Lizhi Ouyang, Michael Widom, Jeffrey A. Hawk

Mathematical Sciences Faculty Research

This paper reviews the three main approaches for predicting the formation of concentrated solid solution alloys (CSSA) and for modeling their thermodynamic properties, in particular, utilizing the methodologies of empirical thermo-physical parameters, CALPHAD method, and first-principles calculations combined with hybrid Monte Carlo/Molecular Dynamics (MC/MD) simulations. In order to speed up CSSA development, a variety of empirical parameters based on Hume-Rothery rules have been developed. Herein, these parameters have been systematically and critically evaluated for their efficiency in predicting solid solution formation. The phase stability of representative CSSA systems is then illustrated from the perspectives of phase diagrams and nucleation driving …


Computational Modeling Of High-Entropy Alloys: Structures, Thermodynamics And Elasticity, Michael C. Gao, Pan Gao, Jeffrey A. Hawk, Lizhi Ouyang, David E. Alman, Mike Widom Oct 2017

Computational Modeling Of High-Entropy Alloys: Structures, Thermodynamics And Elasticity, Michael C. Gao, Pan Gao, Jeffrey A. Hawk, Lizhi Ouyang, David E. Alman, Mike Widom

Mathematical Sciences Faculty Research

This article provides a short review on computational modeling on the formation, thermodynamics, and elasticity of single-phase high-entropy alloys (HEAs). Hundreds of predicted single-phase HEAs were re-examined using various empirical thermo-physical parameters. Potential BCC HEAs (CrMoNbTaTiVW, CrMoNbReTaTiVW, and CrFeMoNbReRuTaVW) were suggested based on CALPHAD modeling. The calculated vibrational entropies of mixing are positive for FCC CoCrFeNi, negative for BCC MoNbTaW, and near-zero for HCP CoOsReRu. The total entropies of mixing were observed to trend in descending order: CoCrFeNi > CoOsReRu > MoNbTaW. Calculated lattice parameters agree extremely well with averaged values estimated from the rule of mixtures (ROM) if the same crystal …