Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Predicting Flexural Strength Of Composite Honeycomb Core Sandwich Panels Using Mechanical Models Of Face Sheet Compressive Strength, Nicholas Bruffey, William Shiu Jun 2016

Predicting Flexural Strength Of Composite Honeycomb Core Sandwich Panels Using Mechanical Models Of Face Sheet Compressive Strength, Nicholas Bruffey, William Shiu

Materials Engineering

The design process at Zodiac Aerospace requires the ability to accurately predict the strength of a composite honeycomb core sandwich panel to adhere to strict FAA regulations. The most common failure mode in long beam composites is in compression. Following ASTM D7249 for a four-point bend test of a long beam flexural test, a mechanical model has been developed that relates the compressive strength of glass fiber face sheets to the flexural strength of the sandwich panel. Zodiac does not currently have data on the compressive strength of the face sheets, so testing was performed to find this property. Asymmetric …


Buckling Strength In Carbon Fiber Polymer Matrix Composites Produced By Filament Winding For Structural Use In Rockets, Kyle Rosenow Jun 2016

Buckling Strength In Carbon Fiber Polymer Matrix Composites Produced By Filament Winding For Structural Use In Rockets, Kyle Rosenow

Materials Engineering

High-powered rockets use thin walled carbon-fiber reinforced polymer (CFRP) tubes as the primary structure and the tubes experience compressive stress during flight, which is estimated at 18MPa. Cal Poly Space Systems (CPSS) recently acquired the capability to use filament winding for manufacturing CFRP structures. Filament winding wraps carbon-fiber tow coated in epoxy around an axisymmetric object, and in this case, an aluminum cylinder. The tube laminate is an angle-ply orientation testing the winding angles 35°, 50°, 65°, and 80° and winding patterns 1/1 and 8/1 in combination using an unsupported parallel compression test. Coupons are one-inch in height, 2.5 inches …


Solution Casting And Mechanical Testing Of Arabinan-Cellulose Nanocomposites, Kevin Su, Alina Lusebrink Jun 2016

Solution Casting And Mechanical Testing Of Arabinan-Cellulose Nanocomposites, Kevin Su, Alina Lusebrink

Materials Engineering

The purpose of this work was to investigate methods to produce consistent, reliable, and testable thin films of arabinan-cellulose nanocomposites. Mechanical properties and composition of the Opuntia ficus-indica cactus spines served as motivation for this research. The high specific strength and stiffness, biodegradability, and sustainability of these spines inspired the creation of composites fabricated from the same materials found in cactus spines: arabinan and nanocrystalline cellulose (NCC). Arabinan serves as the matrix material and NCC as the reinforcement. To explore the feasibility of using a non-toxic solvent, different solution casting techniques with water as a solvent were investigated. Ultrasonication was …