Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Gyroless Nanosatellite Attitude Determination Using An Array Of Spatially Distributed Accelerometers, Kory J. Haydon Jun 2023

Gyroless Nanosatellite Attitude Determination Using An Array Of Spatially Distributed Accelerometers, Kory J. Haydon

Master's Theses

The low size and budget of typical nanosatellite missions limit the available sensors for attitude estimation. Relatively high noise MEMS gyroscopes often must be employed when accurate knowledge of the spacecraft’s angular velocity is necessary for attitude determination and control. This thesis derived and tested in simulation the “Virtual Gyroscope” algorithm, which replaced a standard gyroscope with an array of spatially distributed accelerometers for a 1U CubeSat mission. A MEMS accelerometer model was developed and validated using Root Allan Variance, and the Virtual Gyroscope was tested both in the open loop configuration and as a replacement for a gyroscope in …


Small Satellite Noncommutative Rotation Sequence Attitude Control Using Piezoelectric Actuators, Joshua L. Evans Jan 2016

Small Satellite Noncommutative Rotation Sequence Attitude Control Using Piezoelectric Actuators, Joshua L. Evans

Theses and Dissertations--Electrical and Computer Engineering

Attitude control remains one of the top engineering challenges faced by small satellite mission planning and design. Conventional methods for attitude control include propulsion, reaction wheels, magnetic torque coils, and passive stabilization mechanisms, such as permanent magnets that align with planetary magnetic fields. Drawbacks of these conventional attitude control methods for small satellites include size, power consumption, dependence on external magnetic fields, and lack of full control authority. This research investigates an alternative, novel approach to attitude-control method for small satellites, utilizing the noncommutative property of rigid body rotation sequences. Piezoelectric bimorph actuators are used to induce sinusoidal small-amplitude satellite …


Lightweight Deployment Mechanism Of Solar Arrays For Use In Cubesats, John Wood Ellis Dec 2015

Lightweight Deployment Mechanism Of Solar Arrays For Use In Cubesats, John Wood Ellis

Undergraduate Honors Capstone Projects

Cube satellites, also referred to as CubeSats, were developed in the late twentieth century, and have since served as a cost-effective method of gathering out-of-this-world data. The development of these small-scale satellites have helped universities and small companies worldwide to perform important experiments, as well as gather critical data in order to provide for further space exploration. Cube satellites are designed to be self-sustaining, by using solar cells to capture impinging thermal energy and convert it to power to be consumed by the electronics housed within the satellite itself. In order to function properly, these cells are extended in an …


Ad-Hoc Regional Coverage Constellations Of Cubesats Using Secondary Launches, Guy G. Zohar Mar 2013

Ad-Hoc Regional Coverage Constellations Of Cubesats Using Secondary Launches, Guy G. Zohar

Master's Theses

As development of CubeSat based architectures increase, methods of deploying constellations of CubeSats are required to increase functionality of future systems. Given their low cost and quickly increasing launch opportunities, large numbers of CubeSats can easily be developed and deployed in orbit. However, as secondary payloads, CubeSats are severely limited in their options for deployment into appropriate constellation geometries.

This thesis examines the current methods for deploying cubes and proposes new and efficient geometries using secondary launch opportunities. Due to the current deployment hardware architecture, only the use of different launch opportunities, deployment direction, and deployment timing for individual cubes …