Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 27 of 27

Full-Text Articles in Engineering

Spacex: Breaking The Barrier To The Space Launch Vehicle Industry, Matthew M. Liskowcyz Dec 2016

Spacex: Breaking The Barrier To The Space Launch Vehicle Industry, Matthew M. Liskowcyz

Theses and Dissertations

The Space Launch Vehicle (SLV) industry has been around for a long time, but few companies have managed to enter this industry. SpaceX was founded only 10 years ago, but it has managed to become a leader in the U.S. industry and a dominant player worldwide. The purpose of this thesis research is to discover what it took for SpaceX to break into this tightly controlled industry. A qualitative analysis was performed to compare SpaceX to companies that overcame the barriers of entry for their respective industries. SpaceX, like FedEx, could implement a unique technique to the industry and find …


Phased Helical Antenna Array For Cubesat Application, Kameron Lacalli Dec 2016

Phased Helical Antenna Array For Cubesat Application, Kameron Lacalli

Undergraduate Honors Theses

CubeSats communication links are typically slow due to their power and size restrictions. However, a low power, high speed down link connection can allow for greater data collection and relaying, pushing the capability of 1U CubeSats beyond what is traditionally thought possible. Investigated here is the feasibility of a 11 Mb/s down link connection on a 1U CubeSat, accomplished via 2x2 helical antenna phased array operating on the 802.11 standard. Using a phased array also allows for beam steering to secure connection with the ground station when the on board ADCS may not provide precise pointing capability of the CubeSat, …


Development, Analysis, And Optimization Of A Swirl-Promoting Mean Flow Solution For Solid Rocket Motors, Andrew Steven Fist Dec 2016

Development, Analysis, And Optimization Of A Swirl-Promoting Mean Flow Solution For Solid Rocket Motors, Andrew Steven Fist

Masters Theses

This work demonstrates and analyses a new flow candidate for describing the internal gaseous motion in simulated rocket motors. The fundamental features of this solution include the conservation of key system properties also incorporated in the classic Taylor-Culick (TC) system (i.e. inviscid, axisymmetric, steady and rotational properties), while allowing for the development of a swirling velocity component. The work compares the new solution to the development and formulation of the classic TC system, ultimately identifying that both the new and classic solutions are special cases of the Bragg-Hawthorne equation. Following this development, the text then explores the development of energy-optimized …


Adaptive Estimation And Heuristic Optimization Of Nonlinear Spacecraft Attitude Dynamics, Joshuah A. Hess Sep 2016

Adaptive Estimation And Heuristic Optimization Of Nonlinear Spacecraft Attitude Dynamics, Joshuah A. Hess

Theses and Dissertations

For spacecraft conducting on-orbit operations, changes to the structure of the spacecraft are not uncommon. These planned or unanticipated changes in inertia properties couple with the spacecraft's attitude dynamics and typically require estimation. For systems with time-varying inertia parameters, multiple model adaptive estimation (MMAE) routines can be utilized for parameter and state estimates. MMAE algorithms involve constructing a bank of recursive estimators, each assuming a different hypothesis for the systems dynamics. This research has three distinct, but related, contributions to satellite attitude dynamics and estimation. In the first part of this research, MMAE routines employing parallel banks of unscented attitude …


Orbit Determination Using Vinti's Solution, Steven P. Wright Sep 2016

Orbit Determination Using Vinti's Solution, Steven P. Wright

Theses and Dissertations

Orbital altitudes congested with spacecraft and debris combined with recent collisions have all but negated the Big Sky Theory. As the sheer number of orbital objects to track grows unbounded so does interest in prediction methods that are rapid and minimally computational. Claimed as the \other solvable solution, the recently completed solution too orbital motion about the earth, based on Vinti's method and including the major effects of the equatorial bulge, opens up the prospect of much more accurate analytical models for space situational awareness. A preliminary examination of this solution is presented. A numerical state transition matrix is found …


Space Qualification Testing Of A Deployable Shape Memory Alloy Cubesat Antenna, Carl L. Kobza Sep 2016

Space Qualification Testing Of A Deployable Shape Memory Alloy Cubesat Antenna, Carl L. Kobza

Theses and Dissertations

Increasingly capable CubeSat missions require antenna with improved Radio Frequency performance over the traditional CubeSat antennas. Deployable quadrifilar helical antennas (QHA) enable an acceptable stowing volume and deploy to provide increased gain and bandwidth over traditional patch and dipole antennas. Extensive ground testing is required to ensure the antenna is space qualified and to characterize the antenna deployment in the space environment. AFIT requires a QHA to perform a future CubeSat geolocation mission and contracted Helical Communication Technologies (HCT) to design and manufacture a Shape Memory Alloy (SMA) L-band deployable QHA. Vibration, thermal vacuum, laser vibrometer, and Voltage Standing Wave …


Meeting The Dod’S Tactical Weather Needs Using Cubesats, Shayna K. Mckenney Jun 2016

Meeting The Dod’S Tactical Weather Needs Using Cubesats, Shayna K. Mckenney

Theses and Dissertations

This thesis investigates a CubeSat design that uses Commercial-Off-The-Shelf (COTS) components to capture, store, process, and downlink collected terrestrial weather data at resolutions near stat-of-the-art. The weather phenomena to be detected and transmitted in a timely manner are cloud formations, wind profiles, ocean currents, sea state, lightning, temperature profiles, and precipitation. It is hypothesized and shown that the proposed design will provide an improvement on the current U.S. tactical weather collection satellites because of the anticipated increased reliability and lowered cost to build and maintain the proposed CubeSat constellation. The methodology employed a multi-phase approach through the collective research of …


Sysml Based Cubesat Model Design And Integration With The Horizon Simulation Framework, Shaun Luther Jun 2016

Sysml Based Cubesat Model Design And Integration With The Horizon Simulation Framework, Shaun Luther

Master's Theses

This thesis examines the feasibility of substituting the system input script of Cal Poly’s Horizon Simulation Framework (HSF) with a Model Based Systems Engineering (MBSE) model designed with the Systems Modeling Language (SysML). A concurrent student project, SysML Output Interface Creation for the Horizon Simulation Framework, focused on design of the HSF Translator Plugin which converts SysML models to an HSF specific XML format. A SysML model of the HSF test case, Aeolus, was designed. The original Aeolus HSF input script and the translated SysML input script retained the format and dependency structure required by HSF. Both input scripts …


An Iteration On The Horizon Simulation Framework To Include .Net And Python Scripting, Morgan Yost Jun 2016

An Iteration On The Horizon Simulation Framework To Include .Net And Python Scripting, Morgan Yost

Master's Theses

Modeling and Simulation is a crucial element of the aerospace engineering design pro- cess because it allows designers to thoroughly test their solution before investing in the resources to create it. The Horizon Simulation Framework (HSF) v3.0 is an aerospace modeling and simulation tool that allows the user to verify system level requirements in the early phases of the design process. A low fidelity model of the system that is created by the user is exhaustively tested within the built-in Day-in-the-Life simulator to provide useful information in the form of failed requirements, system bottle necks and leverage points, and potential …


Improved Modeling Of Atmospheric Entry For Meteors With Nose Radii Between 5cm And 10m, Jakob Dale Brisby May 2016

Improved Modeling Of Atmospheric Entry For Meteors With Nose Radii Between 5cm And 10m, Jakob Dale Brisby

Masters Theses

Atmospheric entry studies typically look closely at the peak heating rate that a body encounters during its trajectory. This is an extremely important phenomenon to study because it allows engineers to determine if a trajectory is possible with given materials and craft design specifications. It also allows designers to choose what type of method will be used for mitigating the enormous heat fluxes during entry. In general, it is accepted that during the super-sonic flight regime the body will continue to be heated and an ablative heat shield often is used to deal with these heating processes. The theory outlined …


Development Of A Database For Rapid Approximation Of Spacecraft Radiation Dose During Jupiter Flyby, Sarah Gilbert Stewart May 2016

Development Of A Database For Rapid Approximation Of Spacecraft Radiation Dose During Jupiter Flyby, Sarah Gilbert Stewart

Masters Theses

Interplanetary and deep space missions greatly benefit from the utilization of gravitational assists to reach their final destinations. By closely “swinging by” a planet, a spacecraft can gain or lose velocity or change directions without requiring any expenditure of propulsion. In today’s budget-driven design environment, gravity assist flybys reduce the need for on-board fuel and propulsion systems, thereby reducing overall cost, increasing payload and mission capacity, increasing mission life, and decreasing travel time. It is expected that many future missions will also be designed to swing by Jupiter in order to utilize a gravity assist. However, there is a risk …


Control System Requirements For A Nuclear Thermal Propulsion System, Adam Hasse, Michael Smith, Bradley Pershke, Andrew Adams, Stephen GilliAm May 2016

Control System Requirements For A Nuclear Thermal Propulsion System, Adam Hasse, Michael Smith, Bradley Pershke, Andrew Adams, Stephen GilliAm

Chancellor’s Honors Program Projects

No abstract provided.


Phased Array Antenna Investigation For Cubesat Size Satellites, Kien Dang Apr 2016

Phased Array Antenna Investigation For Cubesat Size Satellites, Kien Dang

Morehead State Theses and Dissertations

A Thesis Presented to the Faculty of the College of Science Morehead State University in Partial Fulfillment of the Requirements for the Degree Master of Science by Kien Dang on April 18, 2016.


Improved Performance By The Tie-Gcm With The Inclusion Of Helium As A Major Species, Fredrick R. Schmidt Mar 2016

Improved Performance By The Tie-Gcm With The Inclusion Of Helium As A Major Species, Fredrick R. Schmidt

Theses and Dissertations

When considering the neutral constituents in the upper thermosphere and exosphere, helium needs to be accounted for as a major species. As detailed by Emmert [2015], most first-principle models do not consider helium a major species when solving for diffusion and collisions within the atmosphere. First-principle, physics-based models hold a distinct advantage of seasonal variations and spatial resolution over empirical models which leads to a more realistic depiction of the atmosphere. The National Center for Atmospheric Research’s (NCAR) self-consistent, physics-based Thermosphere-Ionosphere-Electrodynamic General Circulation Model (TIE-GCM) has been updated to take into account this neutral constituent in its calculations. The major …


Key Detection Rate Modeling And Analysis For Satellite-Based Quantum Key Distribution, Jonathan C. Denton Mar 2016

Key Detection Rate Modeling And Analysis For Satellite-Based Quantum Key Distribution, Jonathan C. Denton

Theses and Dissertations

A satellite QKD model was developed and validated, that allows a user to determine the optimum wavelength for use in a satellite-based QKD link considering the location of ground sites, selected orbit and hardware performance. This thesis explains how the model was developed, validated and presents results from a simulated year-long study of satellite-based quantum key distribution. It was found that diffractive losses and atmospheric losses define a fundamental trade space that drives both orbit and wavelength selection. The optimal orbit is one which generates the highest detection rates while providing equal pass elevation angles and durations to multiple ground …


Vibrational Analysis Of A 12u Chassis, Daniel G. Miller Mar 2016

Vibrational Analysis Of A 12u Chassis, Daniel G. Miller

Theses and Dissertations

The objective of this research is to characterize how the natural frequencies of AFIT’s CubeSat design can be controlled to meet launch vehicle requirements while increasing the internal and external volume available for payload and bus components as the chassis increases in size. A reliable Finite Element (FE) model is created and validated using NASA’s General Environmental Verification Standards (GEVS) vibrational test on the 12U chassis. The validated FE model proves that current boundary conditions and geometric properties with minimized chassis wall thicknesses to maximize usable internal and external volume maintain a first frequency of the fully loaded 12U chassis …


Analysis Of A Near Real-Time Optimal Attitude Control For Satellite Simulators, Ryan M. Patrick Mar 2016

Analysis Of A Near Real-Time Optimal Attitude Control For Satellite Simulators, Ryan M. Patrick

Theses and Dissertations

Dynamic optimization of spacecraft attitude reorientation maneuvers can result in significant savings in attitude determination and control system size, mass, and power. Optimal control theory is generally applied using an open loop trajectory which is vulnerable to disturbances. A closed loop implementation of optimal control has been difficult to achieve due to the computational requirements needed to quickly compute solutions to the optimal control problem. This research focuses on evaluating a near real-time optimal control (RTOC) system for large angle slew maneuvers on the Air Force Institute of Technology's spacecraft simulator called SimSat. A near RTOC algorithm computes optimal control …


Military Applications Of High-Altitude Satellite Orbits In A Multi-Body Dynamical Environment Using Numerical Methods And Dynamical Systems Theory, Meredith M. Wilmer Mar 2016

Military Applications Of High-Altitude Satellite Orbits In A Multi-Body Dynamical Environment Using Numerical Methods And Dynamical Systems Theory, Meredith M. Wilmer

Theses and Dissertations

The circular restricted three-body problem (CR3BP) is a simplified dynamical model for a satellite under the gravitational influence of both the Earth and the Moon, maintaining closer fidelity to the gravitational environment experienced by a high-altitude Earth-orbiting spacecraft than modeling in the Earth-satellite two-body problem. Resonant orbit arcs are used to determine an initial guess to input into an algorithm that computes a trajectory solution with specific design requirements and constraints. A test case uses this method to compute a lunar fly-by transfer solution requiring less than two-body transfer methods and offers an unusual pathway that adds an unpredictability element …


Multi-Cubesat Deployment Strategies: How Different Satellite Deployment Schemes Affect Satellite Separation And Detection For Various Types Of Constellations And Missions, Scott A. Biehl Jr. Mar 2016

Multi-Cubesat Deployment Strategies: How Different Satellite Deployment Schemes Affect Satellite Separation And Detection For Various Types Of Constellations And Missions, Scott A. Biehl Jr.

Theses and Dissertations

As economics drive an increased demand for small satellites and, consequently, an increase in the number of satellites deployed per launch, different deployment schemes and their effects on satellite dynamics must be well understood. While there are advantages to deploying multiple satellites at once, users may have trouble with tracking, identifying, and communicating with their satellites. This investigation examines the deployment of eight 3U CubeSats, and the resulting relative motion within a constellation. Both the distance between any two satellites within a constellation and the volume of a polygon encompassing a constellation are used to analyze the satellite dynamics within …


Space Object Self-Tracker On-Board Orbit Determination Analysis, Stacie M. Flamos Mar 2016

Space Object Self-Tracker On-Board Orbit Determination Analysis, Stacie M. Flamos

Theses and Dissertations

Due to the United States' growing dependence on space based assets and the in- creasing number of resident space objects (RSO), improvement of Space Situational Awareness (SSA) capabilities is more necessary than ever. As a way to aid in this need, the Air Force Institute of Technology (AFIT) is developing the Space Object Self-Tracker (SOS) as a proof-of-concept experimental satellite for RSO precision tracking and collision avoidance system in Low Earth Orbit (LEO). Specifically, SOS will use Global Positioning System (GPS) position estimates for on-board orbit de- termination. Currently, SOS will use the Simplified General Perturbations-4 (SGP4) algorithm as its …


Development Of A Modularized Software Architecture To Enhance Ssa With Cots Telescopes, Julian P. Mccafferty Mar 2016

Development Of A Modularized Software Architecture To Enhance Ssa With Cots Telescopes, Julian P. Mccafferty

Theses and Dissertations

As the catalog of Earth orbiting objects continues to grow exponentially, so too does the necessity for Space Situational Awareness (SSA). Previous work at AFIT has explored augmenting the Space Surveillance Network (SSN) by demonstrating detection and tracking of orbiting objects using Commercial-Off-The-Shelf (COTS) telescopes and Air Force generated Two-Line Element Sets (TLE). This research explores the process of developing and reengineering code into a modularized, hierarchical component architecture designed for the end user while enabling developers to continue to modify the software for future applications. Three graphical user interfaces (GUI) are compiled into standalone executable programs using MATLAB for …


Pointing Analysis And Design Drivers For Low Earth Orbit Satellite Quantum Key Distribution, Jeremiah A. Specht Mar 2016

Pointing Analysis And Design Drivers For Low Earth Orbit Satellite Quantum Key Distribution, Jeremiah A. Specht

Theses and Dissertations

The world relies on encryption to perform critical and sensitive tasks every day. If quantum computing matures, the capability to decode keys and decrypt messages becomes possible. Quantum key distribution (QKD) is a method of distributing secure cryptographic keys which relies on the laws of quantum mechanics. Current implementations of QKD use fiber-based channels which limit the number of users and the distance between users. Satellite-based QKD using free-space channels is proposed as a feasible secure global communication solution. Since a free-space link does not use a waveguide, pointing a transmitter to receiver is required to ensure signal arrival. In …


Minimum-Fuel Trajectory Design In Multiple Dynamical Environments Utilizing Direct Transcription Methods And Particle Swarm Optimization, Alfredo G. Zurita Jr. Mar 2016

Minimum-Fuel Trajectory Design In Multiple Dynamical Environments Utilizing Direct Transcription Methods And Particle Swarm Optimization, Alfredo G. Zurita Jr.

Theses and Dissertations

Particle swarm optimization is used to generate an initial guess for designing fuel-optimal trajectories in multiple dynamical environments. Trajectories designed in the vicinity of Earth use continuous or finite low-thrust burning and transfer from an inclined or equatorial circular low-Earth-orbit to a geostationary orbit. In addition, a trajectory from near-Earth to a periodic orbit about the cislunar Lagrange point with minimized impulsive burn costs is designed within a multi-body dynamical environment. Direct transcription is used in conjunction with a nonlinear optimizer to find locally-optimal trajectories given the initial guess. The near-Earth transfers are propagated at low-level thrust where neither the …


Kinematical Modelling And Its Analytical Inverse Kinematic Solution For The Handling Mechanism Of An Agricultural Robot, Sinem Gozde Defterli Jan 2016

Kinematical Modelling And Its Analytical Inverse Kinematic Solution For The Handling Mechanism Of An Agricultural Robot, Sinem Gozde Defterli

Electronic Theses and Dissertations

Early detection of the crop diseases helps to prevent failure in the amount and the quality of the production. In agricultural robotics, the idea of a disease detection robot is a fresh and an innovative hot-button topic. The exclusion of the diseased parts from the strawberry plants for further analyses is one of the main tasks of a recently developed strawberry robot. To this purpose, the handling mechanism in the robot needs to achieve an accurate manipulation task to reach the target. Reaching, cutting and storing the diseased leaf are challenging and delicate processes during the procedure of the handling …


Approximated Control Affine Dynamics Mode For An Agricultural Field Robot Considering Wheel Terrain Interaction, Pablo Menendez-Aponte Jan 2016

Approximated Control Affine Dynamics Mode For An Agricultural Field Robot Considering Wheel Terrain Interaction, Pablo Menendez-Aponte

Electronic Theses and Dissertations

As populations and the demand for higher crop yields grow, so to does the need for efficient agricultural wheeled mobile robots. To achieve precise navigation through a field it is desirable that the control system is designed based on an accurate dynamic model. In this paper a control affine model for a custom designed skid-steer differential drive wheeled mobile robot is found. The Terramechanic wheel terrain interaction is adopted and modified to consider wheels with a torus geometry. Varying slip ratios and slip angles are considered in the terrain reaction forces, which is curve-fitted using a nonlinear least squares approach …


Comparisons Of Ablator Experimental Performance To Response Modeling And Effects Of Water Phase Transition In Porous Tps Materials, David L. Smith Jan 2016

Comparisons Of Ablator Experimental Performance To Response Modeling And Effects Of Water Phase Transition In Porous Tps Materials, David L. Smith

Theses and Dissertations--Mechanical Engineering

The Mars Science Laboratory Entry Descent and Landing Instrumentation (MEDLI) project performed extensive arc jet tests for development, qualification, and calibration of instrumented heat shield plugs. These plugs each contained several thermocouples for recording near-surface and in-depth temperature response of the Phenolic Impregnated Carbon Ablator (PICA) heat shield. The arc jet test results are entered into a comprehensive database so that broad trends across the test series can be compared. One method of analysis is to compare with ablator material response calculations and solve the in-depth heat conduction equations. Using the near-surface thermocouple measurements as a boundary condition in numerical …


Small Satellite Noncommutative Rotation Sequence Attitude Control Using Piezoelectric Actuators, Joshua L. Evans Jan 2016

Small Satellite Noncommutative Rotation Sequence Attitude Control Using Piezoelectric Actuators, Joshua L. Evans

Theses and Dissertations--Electrical and Computer Engineering

Attitude control remains one of the top engineering challenges faced by small satellite mission planning and design. Conventional methods for attitude control include propulsion, reaction wheels, magnetic torque coils, and passive stabilization mechanisms, such as permanent magnets that align with planetary magnetic fields. Drawbacks of these conventional attitude control methods for small satellites include size, power consumption, dependence on external magnetic fields, and lack of full control authority. This research investigates an alternative, novel approach to attitude-control method for small satellites, utilizing the noncommutative property of rigid body rotation sequences. Piezoelectric bimorph actuators are used to induce sinusoidal small-amplitude satellite …