Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 30

Full-Text Articles in Engineering

Stability Of Quantum Computers, Samudra Dasgupta May 2024

Stability Of Quantum Computers, Samudra Dasgupta

Doctoral Dissertations

Quantum computing's potential is immense, promising super-polynomial reductions in execution time, energy use, and memory requirements compared to classical computers. This technology has the power to revolutionize scientific applications such as simulating many-body quantum systems for molecular structure understanding, factorization of large integers, enhance machine learning, and in the process, disrupt industries like telecommunications, material science, pharmaceuticals and artificial intelligence. However, quantum computing's potential is curtailed by noise, further complicated by non-stationary noise parameter distributions across time and qubits. This dissertation focuses on the persistent issue of noise in quantum computing, particularly non-stationarity of noise parameters in transmon processors. It …


Power System Transients: Impacts Of Non-Ideal Sensors On Measurement-Based Applications, Aaron Wilson Dec 2022

Power System Transients: Impacts Of Non-Ideal Sensors On Measurement-Based Applications, Aaron Wilson

Doctoral Dissertations

The power system is comprised of thousands of lines, generation sources, transformers, and other equipment responsible for servicing millions of customers. Such a complex apparatus requires constant monitoring and protection schemes capable of keeping the system operational, reliable, and resilient. To achieve these goals, measurement is a critical role in the continued functionality of the power system. However, measurement devices are never completely reliable, and are susceptible to inherent irregularities; imparting potentially misleading distortions on measurements containing high-frequency components. This dissertation analyzes some of these effects, as well as the way they may impact certain applications in the grid that …


Remote Human Vital Sign Monitoring Using Multiple-Input Multiple-Output Radar At Millimeter-Wave Frequencies, Toan Khanh Vo Dai Aug 2022

Remote Human Vital Sign Monitoring Using Multiple-Input Multiple-Output Radar At Millimeter-Wave Frequencies, Toan Khanh Vo Dai

Doctoral Dissertations

Non-contact respiration rate (RR) and heart rate (HR) monitoring using millimeter-wave (mmWave) radars has gained lots of attention for medical, civilian, and military applications. These mmWave radars are small, light, and portable which can be deployed to various places. To increase the accuracy of RR and HR detection, distributed multi-input multi-output (MIMO) radar can be used to acquire non-redundant information of vital sign signals from different perspectives because each MIMO channel has different fields of view with respect to the subject under test (SUT). This dissertation investigates the use of a Frequency Modulated Continuous Wave (FMCW) radar operating at 77-81 …


Efficient Deep Learning And Its Applications, Zi Wang May 2022

Efficient Deep Learning And Its Applications, Zi Wang

Doctoral Dissertations

Deep neural networks (DNNs) have achieved huge successes in various tasks such as object classification and detection, image synthesis, game-playing, and biological developmental system simulation. State-or-the-art performance on these tasks is usually achieved by designing deeper and wider DNNs with the cost of huge storage size and high computational complexity. However, the over-parameterization problem of DNNs constrains their deployment in resource-limited devices, such as drones and mobile phones.

With these concerns, many network compression approaches are developed, such as quantization, neural architecture search, network pruning, and knowledge distillation. These approaches reduce the sizes and computational costs of DNNs while maintaining …


Non-Contact Techniques For Human Vital Sign Detection And Gait Analysis, Farnaz Foroughian May 2021

Non-Contact Techniques For Human Vital Sign Detection And Gait Analysis, Farnaz Foroughian

Doctoral Dissertations

Human vital signs including respiratory rate, heart rate, oxygen saturation, blood pressure, and body temperature are important physiological parameters that are used to track and monitor human health condition. Another important biological parameter of human health is human gait. Human vital sign detection and gait investigations have been attracted many scientists and practitioners in various fields such as sport medicine, geriatric medicine, bio-mechanic and bio-medical engineering and has many biological and medical applications such as diagnosis of health issues and abnormalities, elderly care and health monitoring, athlete performance analysis, and treatment of joint problems. Thoroughly tracking and understanding the normal …


Towards Secure Deep Neural Networks For Cyber-Physical Systems, Jiangnan Li May 2021

Towards Secure Deep Neural Networks For Cyber-Physical Systems, Jiangnan Li

Doctoral Dissertations

In recent years, deep neural networks (DNNs) are increasingly investigated in the literature to be employed in cyber-physical systems (CPSs). DNNs own inherent advantages in complex pattern identifying and achieve state-of-the-art performances in many important CPS applications. However, DNN-based systems usually require large datasets for model training, which introduces new data management issues. Meanwhile, research in the computer vision domain demonstrated that the DNNs are highly vulnerable to adversarial examples. Therefore, the security risks of employing DNNs in CPSs applications are of concern.

In this dissertation, we study the security of employing DNNs in CPSs from both the data domain …


Machine Learning With Topological Data Analysis, Ephraim Robert Love May 2021

Machine Learning With Topological Data Analysis, Ephraim Robert Love

Doctoral Dissertations

Topological Data Analysis (TDA) is a relatively new focus in the fields of statistics and machine learning. Methods of exploiting the geometry of data, such as clustering, have proven theoretically and empirically invaluable. TDA provides a general framework within which to study topological invariants (shapes) of data, which are more robust to noise and can recover information on higher dimensional features than immediately apparent in the data. A common tool for conducting TDA is persistence homology, which measures the significance of these invariants. Persistence homology has prominent realizations in methods of data visualization, statistics and machine learning. Extending ML with …


Computational Imaging Approach To Recovery Of Target Coordinates Using Orbital Sensor Data, Michael D. Vaughan Aug 2017

Computational Imaging Approach To Recovery Of Target Coordinates Using Orbital Sensor Data, Michael D. Vaughan

Doctoral Dissertations

This dissertation addresses the components necessary for simulation of an image-based recovery of the position of a target using orbital image sensors. Each component is considered in detail, focusing on the effect that design choices and system parameters have on the accuracy of the position estimate. Changes in sensor resolution, varying amounts of blur, differences in image noise level, selection of algorithms used for each component, and lag introduced by excessive processing time all contribute to the accuracy of the result regarding recovery of target coordinates using orbital sensor data.

Using physical targets and sensors in this scenario would be …


Wide-Area Measurement-Driven Approaches For Power System Modeling And Analytics, Hesen Liu Aug 2017

Wide-Area Measurement-Driven Approaches For Power System Modeling And Analytics, Hesen Liu

Doctoral Dissertations

This dissertation presents wide-area measurement-driven approaches for power system modeling and analytics. Accurate power system dynamic models are the very basis of power system analysis, control, and operation. Meanwhile, phasor measurement data provide first-hand knowledge of power system dynamic behaviors. The idea of building out innovative applications with synchrophasor data is promising.

Taking advantage of the real-time wide-area measurements, one of phasor measurements’ novel applications is to develop a synchrophasor-based auto-regressive with exogenous inputs (ARX) model that can be updated online to estimate or predict system dynamic responses.

Furthermore, since auto-regressive models are in a big family, the ARX model …


Learning Multimodal Structures In Computer Vision, Ali Taalimi Aug 2017

Learning Multimodal Structures In Computer Vision, Ali Taalimi

Doctoral Dissertations

A phenomenon or event can be received from various kinds of detectors or under different conditions. Each such acquisition framework is a modality of the phenomenon. Due to the relation between the modalities of multimodal phenomena, a single modality cannot fully describe the event of interest. Since several modalities report on the same event introduces new challenges comparing to the case of exploiting each modality separately.

We are interested in designing new algorithmic tools to apply sensor fusion techniques in the particular signal representation of sparse coding which is a favorite methodology in signal processing, machine learning and statistics to …


A Quantitative Measure Of Mono-Componentness For Time-Frequency Analysis, Austin P. Albright Dec 2016

A Quantitative Measure Of Mono-Componentness For Time-Frequency Analysis, Austin P. Albright

Doctoral Dissertations

Joint time-frequency (TF) analysis is an ideal method for analyzing non-stationary signals, but is challenging to use leading to it often being neglected. The exceptions being the short-time Fourier transform (STFT) and spectrogram. Even then, the inability to have simultaneously high time and frequency resolution is a frustrating issue with the STFT and spectrogram. However, there is a family of joint TF analysis techniques that do have simultaneously high time and frequency resolution – the quadratic TF distribution (QTFD) family. Unfortunately, QTFDs are often more troublesome than beneficial. The issue is interference/cross-terms that causes these methods to become so difficult …


An Innovative Approach To Johnson Noise Thermometry By Means Of Spectral Estimation, Nora Dianne Bull Aug 2016

An Innovative Approach To Johnson Noise Thermometry By Means Of Spectral Estimation, Nora Dianne Bull

Doctoral Dissertations

Instrumentation in a nuclear power plant is critical in monitoring the stability and safety levels of a reactor. Temperature is a key measurement performed on the core of a reactor to control the power output and sustain a safe thermal margin. If there is a dramatic change in temperature, failure is likely to follow if action is not taken to cool the system. Traditionally, to measure the temperature of a reactor, several resistance temperature detectors are placed in predefined locations on the system. Resistance temperature detectors (RTD) are typically platinum coiled wire wrapped around a ceramic cylinder and encased in …


Face Centered Image Analysis Using Saliency And Deep Learning Based Techniques, Rui Guo Aug 2016

Face Centered Image Analysis Using Saliency And Deep Learning Based Techniques, Rui Guo

Doctoral Dissertations

Image analysis starts with the purpose of configuring vision machines that can perceive like human to intelligently infer general principles and sense the surrounding situations from imagery. This dissertation studies the face centered image analysis as the core problem in high level computer vision research and addresses the problem by tackling three challenging subjects: Are there anything interesting in the image? If there is, what is/are that/they? If there is a person presenting, who is he/she? What kind of expression he/she is performing? Can we know his/her age? Answering these problems results in the saliency-based object detection, deep learning structured …


Magnetic Local Positioning System With Supplemental Magnetometer-Accelerometer Data Fusion, Benjamin Scott Prothro May 2016

Magnetic Local Positioning System With Supplemental Magnetometer-Accelerometer Data Fusion, Benjamin Scott Prothro

Doctoral Dissertations

Geo-location and tracking technology, once confined to the industrial and military sectors, have been widely proliferated to the consumer world since early in the twenty-first century. The commoditization of Global Positioning System (GPS) and inertial measurement integrated circuits has made this possible, with devices small enough to fit in a cellular phone. However, GPS technology is not without its drawbacks: Its power use is high, and it can fail in smaller, obstructed spaces. Magnetic positioning, which exploits the magnetic field coupling between a set of transmitter beacon coils and a set of receiver coils, is an often overlooked, complementary technology …


Exploiting Cross Domain Relationships For Target Recognition, Wei Wang Dec 2015

Exploiting Cross Domain Relationships For Target Recognition, Wei Wang

Doctoral Dissertations

Cross domain recognition extracts knowledge from one domain to recognize samples from another domain of interest. The key to solving problems under this umbrella is to find out the latent connections between different domains. In this dissertation, three different cross domain recognition problems are studied by exploiting the relationships between different domains explicitly according to the specific real problems.

First, the problem of cross view action recognition is studied. The same action might seem quite different when observed from different viewpoints. Thus, how to use the training samples from a given camera view and perform recognition in another new view …


Compressed Sensing In Resource-Constrained Environments: From Sensing Mechanism Design To Recovery Algorithms, Shuangjiang Li Aug 2015

Compressed Sensing In Resource-Constrained Environments: From Sensing Mechanism Design To Recovery Algorithms, Shuangjiang Li

Doctoral Dissertations

Compressed Sensing (CS) is an emerging field based on the revelation that a small collection of linear projections of a sparse signal contains enough information for reconstruction. It is promising that CS can be utilized in environments where the signal acquisition process is extremely difficult or costly, e.g., a resource-constrained environment like the smartphone platform, or a band-limited environment like visual sensor network (VSNs). There are several challenges to perform sensing due to the characteristic of these platforms, including, for example, needing active user involvement, computational and storage limitations and lower transmission capabilities. This dissertation focuses on the study of …


Analysis, Segmentation And Prediction Of Knee Cartilage Using Statistical Shape Models, Joseph Michael Johnson Dec 2013

Analysis, Segmentation And Prediction Of Knee Cartilage Using Statistical Shape Models, Joseph Michael Johnson

Doctoral Dissertations

Osteoarthritis (OA) of the knee is one of the leading causes of chronic disability (along with the hip). Due to rising healthcare costs associated with OA, it is important to fully understand the disease and how it progresses in the knee. One symptom of knee OA is the degeneration of cartilage in the articulating knee. The cartilage pad plays a major role in painting the biomechanical picture of the knee. This work attempts to quantify the cartilage thickness of healthy male and female knees using statistical shape models (SSMs) for a deep knee bend activity. Additionally, novel cartilage segmentation from …


Bayesian Dictionary Learning For Single And Coupled Feature Spaces, Li He Dec 2013

Bayesian Dictionary Learning For Single And Coupled Feature Spaces, Li He

Doctoral Dissertations

Over-complete bases offer the flexibility to represent much wider range of signals with more elementary basis atoms than signal dimension. The use of over-complete dictionaries for sparse representation has been a new trend recently and has increasingly become recognized as providing high performance for applications such as denoise, image super-resolution, inpaiting, compression, blind source separation and linear unmixing. This dissertation studies the dictionary learning for single or coupled feature spaces and its application in image restoration tasks. A Bayesian strategy using a beta process prior is applied to solve both problems.

Firstly, we illustrate how to generalize the existing beta …


A Low-Power, Highly Stabilized Three-Electrode Potentiostat Using Subthreshold Techniques, Melika Roknsharifi Dec 2012

A Low-Power, Highly Stabilized Three-Electrode Potentiostat Using Subthreshold Techniques, Melika Roknsharifi

Doctoral Dissertations

Implantable micro- and nano- sensors and implantable microdevices (IMDs) have demonstrated potential for monitoring various physiological parameters such as glucose, lactate, CO2 [carbon dioxide], pH, etc. Potentiostats are essential components of electrochemical sensors such as glucose monitoring devices for diabetic patients. Diabetes is a metabolic disorder associated with insufficient production or inefficient utilization of insulin. The most important role of this enzyme is to regulate the metabolic breakdown of glucose generating the necessary energy for human activities. Diabetic patients typically monitor their blood glucose levels by pricking a fingertip with a lancing device and applying the blood to a …


Techniques For Wireless Channel Modeling In Harsh Environments, Phani Teja Kuruganti Dec 2012

Techniques For Wireless Channel Modeling In Harsh Environments, Phani Teja Kuruganti

Doctoral Dissertations

With the rapid growth in the networked environments for different industrial, scientific and defense applications, there is a vital need to assure the user or application a certain level of Quality of Service (QoS). Environments like the industrial environment are particularly harsh with interference from metal structures (as found in the manufacturing sector), interference generated during wireless propagation, and multipath fading of the radio frequency (RF) signal all invite novel mitigation techniques. The challenge of achieving the benefits like improved energy efficiency using wireless is closely coupled with maintaining network QoS requirements. Assessment and management of QoS needs to occur, …


Prognostic Approaches Using Transient Monitoring Methods, Michael Eric Sharp Aug 2012

Prognostic Approaches Using Transient Monitoring Methods, Michael Eric Sharp

Doctoral Dissertations

The utilization of steady state monitoring techniques has become an established means of providing diagnostic and prognostic information regarding both systems and equipment. However, steady state data is not the only, or in some cases, even the best source of information regarding the health and state of a system. Transient data has largely been overlooked as a source of system information due to the additional complexity in analyzing these types of signals. The development for algorithms and techniques to quickly, and intuitively develop generic quantification of deviations a transient signal towards the goal of prognostic predictions has until now, largely …


Characterization And Implementation Of An Injection Locked Frequency Divider Based On Relaxation Oscillator, Kai Zhu Aug 2012

Characterization And Implementation Of An Injection Locked Frequency Divider Based On Relaxation Oscillator, Kai Zhu

Doctoral Dissertations

There has been a dramatic increase in wireless awareness among the user community in the past few years. As the wireless communication devices require more integration in terms of both hardware and software, the low-power integrated circuit (IC) solution has gained higher dedication and will dominate in the future radio-frequency IC (RFIC) design. Complementary Metal-Oxide Semiconductor (CMOS) process is extremely attractive for such applications because of its low cost and the possibility to integrate baseband and high frequency circuits on the same chip. The transceiver is often the most power-hungry block in a wireless communication system. The frequency divider (prescaler) …


Development And Experimental Analysis Of Wireless High Accuracy Ultra-Wideband Localization Systems For Indoor Medical Applications, Michael Joseph Kuhn May 2012

Development And Experimental Analysis Of Wireless High Accuracy Ultra-Wideband Localization Systems For Indoor Medical Applications, Michael Joseph Kuhn

Doctoral Dissertations

This dissertation addresses several interesting and relevant problems in the field of wireless technologies applied to medical applications and specifically problems related to ultra-wideband high accuracy localization for use in the operating room. This research is cross disciplinary in nature and fundamentally builds upon microwave engineering, software engineering, systems engineering, and biomedical engineering. A good portion of this work has been published in peer reviewed microwave engineering and biomedical engineering conferences and journals. Wireless technologies in medicine are discussed with focus on ultra-wideband positioning in orthopedic surgical navigation. Characterization of the operating room as a medium for ultra-wideband signal transmission …


Extending Depth Of Field Via Multifocus Fusion, Harishwaran Hariharan Dec 2011

Extending Depth Of Field Via Multifocus Fusion, Harishwaran Hariharan

Doctoral Dissertations

In digital imaging systems, due to the nature of the optics involved, the depth of field is constricted in the field of view. Parts of the scene are in focus while others are defocused. Here, a framework of versatile data-driven application independent methods to extend the depth of field in digital imaging systems is presented. The principal contributions in this effort are the use of focal connectivity, the direct use of curvelets and features extracted by Empirical Mode Decomposition, namely Intrinsic Mode Images, for multifocus fusion. The input images are decomposed into focally connected components, peripheral and medial coefficients and …


Robust Multichannel Functional-Data-Analysis Methods For Data Recovery In Complex Systems, Jian Sun Dec 2011

Robust Multichannel Functional-Data-Analysis Methods For Data Recovery In Complex Systems, Jian Sun

Doctoral Dissertations

In recent years, Condition Monitoring (CM), which can be performed via several sensor channels, has been recognized as an effective paradigm for failure prevention of operational equipment or processes. However, the complexity caused by asynchronous data collection with different and/or time-varying sampling/transmission rates has long been a hindrance in the effective use of multichannel data in constructing empirical models. The problem becomes more challenging when sensor readings are incomplete. Traditional sensor data recovery techniques are often prohibited in asynchronous CM environments, not to mention sparse datasets. The proposed Functional Principal Component Analysis (FPCA) methodologies, e.g., nonparametric FPC model and semi-parametric …


Turbo Bayesian Compressed Sensing, Depeng Yang Aug 2011

Turbo Bayesian Compressed Sensing, Depeng Yang

Doctoral Dissertations

Compressed sensing (CS) theory specifies a new signal acquisition approach, potentially allowing the acquisition of signals at a much lower data rate than the Nyquist sampling rate. In CS, the signal is not directly acquired but reconstructed from a few measurements. One of the key problems in CS is how to recover the original signal from measurements in the presence of noise. This dissertation addresses signal reconstruction problems in CS. First, a feedback structure and signal recovery algorithm, orthogonal pruning pursuit (OPP), is proposed to exploit the prior knowledge to reconstruct the signal in the noise-free situation. To handle the …


Collaborative Solutions To Visual Sensor Networks, Mahmut Karakaya Aug 2011

Collaborative Solutions To Visual Sensor Networks, Mahmut Karakaya

Doctoral Dissertations

Visual sensor networks (VSNs) merge computer vision, image processing and wireless sensor network disciplines to solve problems in multi-camera applications in large surveillance areas. Although potentially powerful, VSNs also present unique challenges that could hinder their practical deployment because of the unique camera features including the extremely higher data rate, the directional sensing characteristics, and the existence of visual occlusions.

In this dissertation, we first present a collaborative approach for target localization in VSNs. Traditionally; the problem is solved by localizing targets at the intersections of the back-projected 2D cones of each target. However, the existence of visual occlusions among …


Multi-Modular Integral Pressurized Water Reactor Control And Operational Reconfiguration For A Flow Control Loop, Sergio Ricardo Pereira Perillo Dec 2010

Multi-Modular Integral Pressurized Water Reactor Control And Operational Reconfiguration For A Flow Control Loop, Sergio Ricardo Pereira Perillo

Doctoral Dissertations

This dissertation focused on the IRIS design since this will likely be one of the designs of choice for future deployment in the U.S and developing countries. With a net 335 MWe output IRIS novel design falls in the “medium” size category and it is a potential candidate for the so called modular reactors, which may be appropriate for base load electricity generation, especially in regions with smaller electricity grids, but especially well suited for more specialized non-electrical energy applications such as district heating and process steam for desalination. The first objective of this dissertation is to evaluate and quantify …


An Adaptive Nonparametric Modeling Technique For Expanded Condition Monitoring Of Processes, Matthew John Humberstone May 2010

An Adaptive Nonparametric Modeling Technique For Expanded Condition Monitoring Of Processes, Matthew John Humberstone

Doctoral Dissertations

New reactor designs and the license extensions of the current reactors has created new condition monitoring challenges. A major challenge is the creation of a data-based model for a reactor that has never been built or operated and has no historical data. This is the motivation behind the creation of a hybrid modeling technique based on first principle models that adapts to include operating reactor data as it becomes available.

An Adaptive Non-Parametric Model (ANPM) was developed for adaptive monitoring of small to medium size reactors (SMR) but would be applicable to all designs. Ideally, an adaptive model should have …


An Effective Approach To Nonparametric Quickest Detection And Its Decentralized Realization, Dayu Yang May 2010

An Effective Approach To Nonparametric Quickest Detection And Its Decentralized Realization, Dayu Yang

Doctoral Dissertations

This dissertation focuses on the study of nonparametric quickest detection and its decentralized implementation in a distributed environment. Quickest detection schemes are geared toward detecting a change in the state of a data stream or a real-time process. Classical quickest detection schemes invariably assume knowledge of the pre-change and post-change distributions that may not be available in many applications. A distribution free nonparametric quickest detection procedure is presented based on a novel distance measure, referred to as the Q-Q distance calculated from the Quantile-Quantile plot. Theoretical analysis of the distance measure and detection procedure is presented to justify the proposed …