Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Multi-Scale Spatial Cognition Models And Bio-Inspired Robot Navigation, Martin I. Llofriu Alonso Jun 2017

Multi-Scale Spatial Cognition Models And Bio-Inspired Robot Navigation, Martin I. Llofriu Alonso

USF Tampa Graduate Theses and Dissertations

The rodent navigation system has been the focus of study for over a century. Discoveries made lately have provided insight on the inner workings of this system. Since then, computational approaches have been used to test hypothesis, as well as to improve robotics navigation and learning by taking inspiration on the rodent navigation system.

This dissertation focuses on the study of the multi-scale representation of the rat’s current location found in the rat hippocampus. It first introduces a model that uses these different scales in the Morris maze task to show their advantages. The generalization power of larger scales of …


Orthoplanar Spring Based Compliant Force/Torque Sensor For Robot Force Control, Jerry West Mar 2017

Orthoplanar Spring Based Compliant Force/Torque Sensor For Robot Force Control, Jerry West

USF Tampa Graduate Theses and Dissertations

A compliant force/torque sensor for robot force control has been developed. This thesis presents methods of designing, testing, and implementing the sensor on a robotic system. The sensor uses an orthoplanar spring equipped with Hall-effect sensors to measure one component of force and two moment components. Its unique design allows for simple and cost effective manufacturing, high reliability, and compactness. The device may be used in applications where a robot must control contact forces with its environment, such as in surface cleaning tasks, manipulating doors, and removing threaded fasteners. The compliant design of the sensor improves force control performance and …


Impact Force Reduction Using Variable Stiffness With An Optimal Approach For Jumping Robots, Juan Manuel Calderon Chavez Feb 2017

Impact Force Reduction Using Variable Stiffness With An Optimal Approach For Jumping Robots, Juan Manuel Calderon Chavez

USF Tampa Graduate Theses and Dissertations

Running, jumping and walking are physical activities that are performed by humans in a simple and efficient way. However, these types of movements are difficult to perform by humanoid robots. Humans perform these activities without difficulty thanks to their ability to absorb the ground impact force. The absorption of the impact force is based on the human ability to vary muscles stiffness.

The principal objective of this dissertation is to study vertical jumps in order to reduce the impact force in the landing phase of the jump motion of humanoid robots. Additionally, the impact force reduction is applied to an …