Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Kinematic Control Of Redundant Mobile Manipulators, Mustafa Mashali Nov 2015

Kinematic Control Of Redundant Mobile Manipulators, Mustafa Mashali

USF Tampa Graduate Theses and Dissertations

A mobile manipulator is a robotic arm mounted on a robotic mobile platform. In such a system, the degrees of freedom of the mobile platform are combined with that of the manipulator. As a result, the workspace of the manipulator is substantially extended. A mobile manipulator has two trajectories: the end-effector trajectory and the mobile platform trajectory. Typically, the mobile platform trajectory is not defined and is determined through inverse kinematics. But in some applications it is important to follow a specified mobile platform trajectory. The main focus of this work is to determine the inverse kinematics of a mobile …


Dual 7-Degree-Of-Freedom Robotic Arm Remote Teleoperation Using Haptic Devices, Yu-Cheng Wang Sep 2015

Dual 7-Degree-Of-Freedom Robotic Arm Remote Teleoperation Using Haptic Devices, Yu-Cheng Wang

USF Tampa Graduate Theses and Dissertations

A teleoperated system of dual redundant manipulator will be controlled in this thesis. The robot used with the dual redundant manipulator in this thesis is Baxter. Baxter’s redundant robot arms are 7-degree-of-freedom arms. The problem that will be solved in this thesis is optimization of the 7-degree-of-freedom robot arms. The control algorithm of the 7-degree-of-freedom robot arms will be discussed and built. A simulation program will be built to test the control algorithm. Based on the control algorithm, a teleoperation system will be created for Baxter. The controller used is Omni, which is a six-joint haptic device. Omni will also …


Reducing The Control Burden Of Legged Robotic Locomotion Through Biomimetic Consonance In Mechanical Design And Control, Caitrin Elizabeth Eaton Jan 2015

Reducing The Control Burden Of Legged Robotic Locomotion Through Biomimetic Consonance In Mechanical Design And Control, Caitrin Elizabeth Eaton

USF Tampa Graduate Theses and Dissertations

Terrestrial robots must be capable of negotiating rough terrain if they are to become autonomous outside of the lab. Although the control mechanism offered by wheels is attractive in its simplicity, any wheeled system is confined to relatively flat terrain. Wheels will also only ever be useful for rolling, while limbs observed in nature are highly multimodal. The robust locomotive utility of legs is evidenced by the many animals that walk, run, jump, swim, and climb in a world full of challenging terrain.

On the other hand, legs with multiple degrees of freedom (DoF) require much more complex control and …


Visual Slam And Surface Reconstruction For Abdominal Minimally Invasive Surgery, Bingxiong Lin Jan 2015

Visual Slam And Surface Reconstruction For Abdominal Minimally Invasive Surgery, Bingxiong Lin

USF Tampa Graduate Theses and Dissertations

Depth information of tissue surfaces and laparoscope poses are crucial for accurate surgical guidance and navigation in Computer Assisted Surgeries (CAS). Intra-operative Three Dimensional (3D) reconstruction and laparoscope localization are therefore two fundamental tasks in CAS. This dissertation focuses on the abdominal Minimally Invasive Surgeries (MIS) and presents laparoscopic-video-based methods for these two tasks.

Different kinds of methods have been presented to recover 3D surface structures of surgical scenes in MIS. Those methods are mainly based on laser, structured light, time-of-flight cameras, and video cameras. Among them, laparoscopic-video-based surface reconstruction techniques have many significant advantages. Specifically, they are non-invasive, provide …