Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Involuntary Signal-Based Grounding Of Civilian Unmanned Aerial Systems (Uas) In Civilian Airspace, Keith Conley Dec 2019

Involuntary Signal-Based Grounding Of Civilian Unmanned Aerial Systems (Uas) In Civilian Airspace, Keith Conley

Master's Theses

This thesis investigates the involuntary signal-based grounding of civilian unmanned aerial systems (UAS) in unauthorized air spaces. The technique proposed here will forcibly land unauthorized UAS in a given area in such a way that the UAS will not be harmed, and the pilot cannot stop the landing. The technique will not involuntarily ground authorized drones which will be determined prior to the landing. Unauthorized airspaces include military bases, university campuses, areas affected by a natural disaster, and stadiums for public events. This thesis proposes an early prototype of a hardware-based signal based involuntary grounding technique to handle the problem …


An Application Of Sliding Mode Control To Model-Based Reinforcement Learning, Aaron Thomas Parisi Sep 2019

An Application Of Sliding Mode Control To Model-Based Reinforcement Learning, Aaron Thomas Parisi

Master's Theses

The state-of-art model-free reinforcement learning algorithms can generate admissible controls for complicated systems with no prior knowledge of the system dynamics, so long as sufficient (oftentimes millions) of samples are available from the environ- ment. On the other hand, model-based reinforcement learning approaches seek to leverage known optimal or robust control to reinforcement learning tasks by mod- elling the system dynamics and applying well established control algorithms to the system model. Sliding-mode controllers are robust to system disturbance and modelling errors, and have been widely used for high-order nonlinear system control. This thesis studies the application of sliding mode control …


Utilizing Trajectory Optimization In The Training Of Neural Network Controllers, Nicholas Kimball Sep 2019

Utilizing Trajectory Optimization In The Training Of Neural Network Controllers, Nicholas Kimball

Master's Theses

Applying reinforcement learning to control systems enables the use of machine learning to develop elegant and efficient control laws. Coupled with the representational power of neural networks, reinforcement learning algorithms can learn complex policies that can be difficult to emulate using traditional control system design approaches. In this thesis, three different model-free reinforcement learning algorithms, including Monte Carlo Control, REINFORCE with baseline, and Guided Policy Search are compared in simulated, continuous action-space environments. The results show that the Guided Policy Search algorithm is able to learn a desired control policy much faster than the other algorithms. In the inverted pendulum …


Robot Navigation In Cluttered Environments With Deep Reinforcement Learning, Ryan Weideman Jun 2019

Robot Navigation In Cluttered Environments With Deep Reinforcement Learning, Ryan Weideman

Master's Theses

The application of robotics in cluttered and dynamic environments provides a wealth of challenges. This thesis proposes a deep reinforcement learning based system that determines collision free navigation robot velocities directly from a sequence of depth images and a desired direction of travel. The system is designed such that a real robot could be placed in an unmapped, cluttered environment and be able to navigate in a desired direction with no prior knowledge. Deep Q-learning, coupled with the innovations of double Q-learning and dueling Q-networks, is applied. Two modifications of this architecture are presented to incorporate direction heading information that …


Surveying Underwater Shipwrecks With Probabilistic Roadmaps, Amy Jeannette Lewis Jun 2019

Surveying Underwater Shipwrecks With Probabilistic Roadmaps, Amy Jeannette Lewis

Master's Theses

Almost two thirds of the Earth's surface is covered in ocean, and yet, only about 5% of it is mapped. There are an unknown amount of sunken ships, planes, and other artifacts hidden below the sea. Extensive search via boat and a sonar tow fish following a standard lawnmower pattern is used to identify sites of interest. Then, if a site has been determined to potentially be historically significant, the most common next step is a survey by either a human dive team or remotely operated vehicle. These are time consuming, error prone, and potentially dangerous options, but autonomous underwater …


Comparison Of Lqr And Lqr-Mrac For Linear Tractor-Trailer Model, Kevin Richard Gasik May 2019

Comparison Of Lqr And Lqr-Mrac For Linear Tractor-Trailer Model, Kevin Richard Gasik

Master's Theses

The United States trucking industry is immense. Employing over three million drivers and traveling to every city in the country. Semi-Trucks travel millions of miles each week and encompass roads that civilians travel on. These vehicles should be safe and allow efficient travel for all. Autonomous vehicles have been discussed in controls for many decades. Now fleets of autonomous vehicles are beginning their integration into society. The ability to create an autonomous system requires domain and system specific knowledge. Approaches to implement a fully autonomous vehicle have been developed using different techniques in control systems such as Kalman Filters, Neural …