Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Precision Weed Management Based On Uas Image Streams, Machine Learning, And Pwm Sprayers, Jason Allen Davis Dec 2022

Precision Weed Management Based On Uas Image Streams, Machine Learning, And Pwm Sprayers, Jason Allen Davis

Graduate Theses and Dissertations

Weed populations in agricultural production fields are often scattered and unevenly distributed; however, herbicides are broadcast across fields evenly. Although effective, in the case of post-emergent herbicides, exceedingly more pesticides are used than necessary. A novel weed detection and control workflow was evaluated targeting Palmer amaranth in soybean (Glycine max) fields. High spatial resolution (0.4 cm) unmanned aircraft system (UAS) image streams were collected, annotated, and used to train 16 object detection convolutional neural networks (CNNs; RetinaNet, Faster R-CNN, Single Shot Detector, and YOLO v3) each trained on imagery with 0.4, 0.6, 0.8, and 1.2 cm spatial resolutions. Models were …


Quantifying Spatial Heterogeneity Of Wild Blueberries And Crop Water Stress Monitoring Using Remote Sensing Technologies, Kallol Barai Aug 2022

Quantifying Spatial Heterogeneity Of Wild Blueberries And Crop Water Stress Monitoring Using Remote Sensing Technologies, Kallol Barai

Electronic Theses and Dissertations

The wild blueberry is one of the major crops of Maine, with significant economic value and potential health benefits. Due to global climate change, drought impacts have been increasing significantly in recent years in the northeast region of the USA, causing significant economic losses in the agricultural sectors. It has been predicted to increase further in the future. Changing patterns of the elevated atmospheric temperatures, increased rainfall variabilities, and more frequent drought events have made the wild blueberry industry of Maine vulnerable, suggesting the adoption of novel approaches to mitigate the negative impacts of global climate changes. Also, wild blueberry …


Deep Learning Applications In Industrial And Systems Engineering, Winthrop Harvey Aug 2022

Deep Learning Applications In Industrial And Systems Engineering, Winthrop Harvey

Graduate Theses and Dissertations

Deep learning - the use of large neural networks to perform machine learning - has transformed the world. As the capabilities of deep models continue to grow, deep learning is becoming an increasingly valuable and practical tool for industrial engineering. With its wide applicability, deep learning can be turned to many industrial engineering tasks, including optimization, heuristic search, and functional approximation. In this dissertation, the major concepts and paradigms of deep learning are reviewed, and three industrial engineering projects applying these methods are described. The first applies a deep convolutional network to the task of absolute aerial geolocalization - the …


Composite Style Pixel And Point Convolution-Based Deep Fusion Neural Network Architecture For The Semantic Segmentation Of Hyperspectral And Lidar Data, Kevin T. Decker, Brett J. Borghetti Apr 2022

Composite Style Pixel And Point Convolution-Based Deep Fusion Neural Network Architecture For The Semantic Segmentation Of Hyperspectral And Lidar Data, Kevin T. Decker, Brett J. Borghetti

Faculty Publications

Multimodal hyperspectral and lidar data sets provide complementary spectral and structural data. Joint processing and exploitation to produce semantically labeled pixel maps through semantic segmentation has proven useful for a variety of decision tasks. In this work, we identify two areas of improvement over previous approaches and present a proof of concept network implementing these improvements. First, rather than using a late fusion style architecture as in prior work, our approach implements a composite style fusion architecture to allow for the simultaneous generation of multimodal features and the learning of fused features during encoding. Second, our approach processes the higher …


A Comparison Of Sporadic-E Occurrence Rates Using Gps Radio Occultation And Ionosonde Measurements, Rodney Carmona, Omar A. Nava, Eugene V. Dao, Daniel J. Emmons Jan 2022

A Comparison Of Sporadic-E Occurrence Rates Using Gps Radio Occultation And Ionosonde Measurements, Rodney Carmona, Omar A. Nava, Eugene V. Dao, Daniel J. Emmons

Faculty Publications

Sporadic-E (Es) occurrence rates from Global Position Satellite radio occultation (GPS-RO) measurements have shown to vary by a factor of five between studies, motivating the need for a comparison with ground-based measurements. In an attempt to find accurate GPS-RO techniques for detecting Es formation, occurrence rates derived using five previously developed GPS-RO techniques are compared to ionosonde measurements over an eight-year period from 2010–2017. GPS-RO measurements within 170 km of a ionosonde site are used to calculate Es occurrence rates and compared to the ground-truth ionosonde measurements. The techniques are compared individually for each ionosonde site …


Machine Learning Land Cover And Land Use Classification Of 4-Band Satellite Imagery, Lorelei Turner [*], Torrey J. Wagner, Paul Auclair, Brent T. Langhals Jan 2022

Machine Learning Land Cover And Land Use Classification Of 4-Band Satellite Imagery, Lorelei Turner [*], Torrey J. Wagner, Paul Auclair, Brent T. Langhals

Faculty Publications

Land-cover and land-use classification generates categories of terrestrial features, such as water or trees, which can be used to track how land is used. This work applies classical, ensemble and neural network machine learning algorithms to a multispectral remote sensing dataset containing 405,000 28x28 pixel image patches in 4 electromagnetic frequency bands. For each algorithm, model metrics and prediction execution time were evaluated, resulting in two families of models; fast and precise. The prediction time for an 81,000-patch group of predictions wasmodels, and >5s for the precise models, and there was not a significant change in prediction time when a …


Arithfusion: An Arithmetic Deep Model For Temporal Remote Sensing Image Fusion, Md Reshad Ul Hoque, Jian Wu, Chiman Kwan, Krzysztof Koperski, Jiang Li Jan 2022

Arithfusion: An Arithmetic Deep Model For Temporal Remote Sensing Image Fusion, Md Reshad Ul Hoque, Jian Wu, Chiman Kwan, Krzysztof Koperski, Jiang Li

Electrical & Computer Engineering Faculty Publications

Different satellite images may consist of variable numbers of channels which have different resolutions, and each satellite has a unique revisit period. For example, the Landsat-8 satellite images have 30 m resolution in their multispectral channels, the Sentinel-2 satellite images have 10 m resolution in the pan-sharp channel, and the National Agriculture Imagery Program (NAIP) aerial images have 1 m resolution. In this study, we propose a simple yet effective arithmetic deep model for multimodal temporal remote sensing image fusion. The proposed model takes both low- and high-resolution remote sensing images at t1 together with low-resolution images at a …


Industry 4.0 Remanufacturing: A Novel Approach Towards Smart Remanufacturing, Prashansa Ragampeta Jan 2022

Industry 4.0 Remanufacturing: A Novel Approach Towards Smart Remanufacturing, Prashansa Ragampeta

Masters Theses

“Smart remanufacturing has become more popular in recent years as a result of its multiple benefits and the growing need for society to encourage a circular economy that leads to sustainability. One of the most common end-of-life (EoL) choices that can lead to a circular economy is remanufacturing. As a result, at the end-of-life stage of a product, it is critical to prioritize this choice over other accessible options because it is the only recovery option that retains the same quality as a new product. This work focuses on the numerous technologies that can aid in the improvement of smart …


Relative Radiometric Correction Of Pushbroom Satellites Using The Yaw Maneuver, Christopher Begeman Jan 2022

Relative Radiometric Correction Of Pushbroom Satellites Using The Yaw Maneuver, Christopher Begeman

Electronic Theses and Dissertations

Earth imaging satellites commonly acquire multispectral imagery using linear array detectors formatted as a pushbroom scanner. Landsat 8, a well-known example, uses pushbroom scanning and thus has 73,000 individual detectors. These 73,000 detectors are split among 14 different focal plane modules (FPM), and each detector and FPM exhibit unique behavior when monitoring a uniform radiance value. To correct for each detectors differences in sensor measurement a novel technique of relative gain estimation that employs an optimized modified Signal-to-Noise Ratio through a 90˚ yaw maneuver, also known as side slither, is presented that allows for both FPM and detector level relative …