Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Advances In Autonomous-Underwater-Vehicle Based Passive Bottom-Loss Estimation By Processing Of Marine Ambient Noise, Lanfranco Muzi Dec 2015

Advances In Autonomous-Underwater-Vehicle Based Passive Bottom-Loss Estimation By Processing Of Marine Ambient Noise, Lanfranco Muzi

Dissertations and Theses

Accurate modeling of acoustic propagation in the ocean waveguide is important to SONAR-performance prediction, and requires, particularly in shallow water environments, characterizing the bottom reflection loss with a precision that databank-based modeling cannot achieve. Recent advances in the technology of autonomous underwater vehicles (AUV) make it possible to envision a survey system for seabed characterization composed of a short array mounted on a small AUV. The bottom power reflection coefficient (and the related reflection loss) can be estimated passively by beamforming the naturally occurring marine ambient-noise acoustic field recorded by a vertical line array of hydrophones. However, the reduced array …


Modeling Acoustic Scattering From The Seabed Using Transport Theory, Jorge Quijano, Lisa M. Zurk Sep 2010

Modeling Acoustic Scattering From The Seabed Using Transport Theory, Jorge Quijano, Lisa M. Zurk

Electrical and Computer Engineering Faculty Publications and Presentations

Radiative Transfer (RT) theory has established itself as an important tool for electromagnetic remote sensing in parallel plane geometries with random distributions of scatterers, and most recently it has also been proposed as a model for the propagation of elastic waves in layered ocean sediments. In this work the capabilities of this model are illustrated, as the RT method is used to predict backscattering strength from laboratory models of random media. The RT model is characterized by its flexibility on accommodating scatterers in a broad variety of sizes, shapes, and acoustic contrast relative to the background media. Additionally, this formulation …