Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Public Affairs, Public Policy and Public Administration

PDF

Series

2016

Simulation

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Exploratory Assessment Of Roadway Infrastructure Adaptation To The Impacts Of Sea-Level Rise, Mostafa Batouli Nov 2016

Exploratory Assessment Of Roadway Infrastructure Adaptation To The Impacts Of Sea-Level Rise, Mostafa Batouli

FIU Electronic Theses and Dissertations

Transportation agencies in coastal urban areas face a significant challenge to enhance the long-term resilience of their networks to flooding and storm surge events exacerbated by sea level rise. The problem of sea-level rise adaptation is characterized by deep uncertainty that makes it complex to assess the value of adaptation investments. To enable informed adaptation decisions, the present study created a dynamic stochastic modeling framework based on the theoretical underpinnings of complex adaptive systems that integrates: (i) stochastic simulation of sea-level rise stressors based on the data obtained from downscaled climate studies pertaining to future projections of sea-level and precipitation; …


Advances In Repurposing And Recycling Of Post-Vehicle-Application Lithium-Ion Batteries, Charles R. Standridge, Lindsay Corneal, Nicholas Baine May 2016

Advances In Repurposing And Recycling Of Post-Vehicle-Application Lithium-Ion Batteries, Charles R. Standridge, Lindsay Corneal, Nicholas Baine

Mineta Transportation Institute

Increased electrification of vehicles has increased the use of lithium-ion batteries for energy storage, and raised the issue of what to do with post-vehicle-application batteries. Three possibilities have been identified: 1) remanufacturing for intended reuse in vehicles; 2) repurposing for non-vehicle, stationary storage applications; and 3) recycling, extracting the precious metals, chemicals and other byproducts. Advances in repurposing and recycling are presented, along with a mathematical model that forecasts the manufacturing capacity needed for remanufacturing, repurposing, and recycling. Results obtained by simulating the model show that up to a 25% reduction in the need for new batteries can be achieved …