Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 32

Full-Text Articles in Engineering

Experimental Analysis Of The Integrated High-Lift Propulsor, Robert W. Deters, Byron Ward, Shreyas Narsipur Jan 2024

Experimental Analysis Of The Integrated High-Lift Propulsor, Robert W. Deters, Byron Ward, Shreyas Narsipur

Publications

Wind tunnel testing was conducted to evaluate the performance of the Integrated High Lift Propulsor (IHLP), a novel Distributed Electric Propulsion (DEP) system. The IHLP integrates traditional Krueger flap/slat elements with a Distributed Electric Propulsion design, enhancing high lift performance and cruise efficiency compared to conventional pylon-mounted DEP configurations. Starting from a baseline configuration determined from pretest Computational Fluid Dynamics (CFD) analyses, a parametric study was performed to determine the influence on the aerodynamic characteristics (𝐶𝑙 , 𝐶𝑥, and 𝐶𝑚). The study involved variations in flap settings, slat angles, overlap, propeller tilt, and propeller position. The impact of Reynolds number, …


Electromagnetic Slosh And Liquid Position Detection, Eduardo Antonio Rojas Mar 2022

Electromagnetic Slosh And Liquid Position Detection, Eduardo Antonio Rojas

Publications

Apparatus and techniques are described for monitoring slosh of a liquid within a propellant tank. The approaches described herein can use an electromagnetic transmitter positioned at a first location on or within the tank, the electromagnetic transmitter coupled to a source of electro­magnetic energy and arranged to establish a specified elec­tromagnetic field configuration within the tank using a signal from the source, and an electromagnetic receiver positioned at a different second location on or within the tank, the electromagnetic receiver arranged to sense an electromag­netic field established within the tank by the electromagnetic transmitter. A control circuit can be coupled …


Systems And Methods For Suppressing Noise From An Aircraft Engine, Reda R. Mankbadi Dec 2021

Systems And Methods For Suppressing Noise From An Aircraft Engine, Reda R. Mankbadi

Publications

Systems and methods for noise suppression for aircraft are disclosed. The aircraft may include a fuselage. The aircraft may include a plurality of wings connected to or formed with the fuselage. The aircraft may include at least one engine configured to generate a propulsion force to propel the aircraft. The at least one engine may include a nozzle assembly having a nozzle body with an outlet that releases an exhaust air or a jet flow. The aircraft may include a noise suppression assembly. The noise suppression assembly may be configured to interact with the exhaust air or jet flow to …


Systems And Methods For Noise Mitigation For Hybrid And Electric Aircraft, Lenny Gartenberg, Richard P. Anderson, Borja Martos Mar 2021

Systems And Methods For Noise Mitigation For Hybrid And Electric Aircraft, Lenny Gartenberg, Richard P. Anderson, Borja Martos

Publications

A system and method of noise mitigation for hybrid and electric aircraft, the aircraft having a controllable pitch propeller or rotor(s) with a plurality of blades. The propeller or rotor(s) are driven by a drive system to provide thrust for the aircraft, and the blades of the propeller or rotor(s) are further movable about pivot axis to vary a pitch thereof. A controller on-board the aircraft is operable to cause rotation or movement of the blades of the propeller or rotor(s) about their pivot axis to alter and/or focus at least one aspect of the propeller generated noise to reduce …


Performance Testing Of Aero-Naut Camfolding Propellers, Or D. Dantsker, Robert W. Deters, Marco Caccamo, Michael S. Selig Jun 2020

Performance Testing Of Aero-Naut Camfolding Propellers, Or D. Dantsker, Robert W. Deters, Marco Caccamo, Michael S. Selig

Publications

The increase in popularity of unmanned aerial vehicles (UAVs) has been driven by their use in civilian, education, government, and military applications. However, limited on-board energy storage significantly limits flight time and ultimately usability. The propulsion system plays a critical part in the overall energy consumption of the UAV; therefore, it is necessary to determine the most optimal combination of possible propulsion system components for a given mission profile, i.e. propellers, motors, and electronic speed controllers (ESC). Hundreds of options are available for the different components with little performance specifications available for most of them. By examining a variety of …


Aerodynamic And Aeroacoustic Performance Of Small Uav Propellers In Static Conditions, William Jordan, Robert W. Deters, Shreyas Narsipur Jun 2020

Aerodynamic And Aeroacoustic Performance Of Small Uav Propellers In Static Conditions, William Jordan, Robert W. Deters, Shreyas Narsipur

Publications

The proliferation of small multi-rotor UAVs in commercial, recreational, and surveillance spheres has garnered significant interest in the noise produced by these vehicles. The current research aims to study the relationship between the aerodynamic performance and acoustic characteristics of small-scale UAV propellers. Three commercially available propellers for the DJI Phantom 2/3 UAV were selected for preliminary development and validation of an aeroacoustic experimental test setup and associated data reduction methods. Propeller thrust, torque, and power measurements were recorded at static conditions. Upon successful validation of the test bench, acoustic measurements were taken at the propeller disk’s upstream and in-plane locations. …


Communication In Fluid Medium Using Motor Modulation, Brian Butka, Jefferson Romney Feb 2020

Communication In Fluid Medium Using Motor Modulation, Brian Butka, Jefferson Romney

Publications

Aquatic vehicles may use electric motors for propulsion, such as brushless motors. As an example, a speed of these motors can be controlled using a pulse-width-modulated (PWM) electrical signal that varies the motor speed by varying pulse parameters within the PWM signal. PMW modulation can cause the motor to emit significant acoustic noise into the environment. In a fluid medium, such as aquatic environment, such noise can be detected with hydro­phones or other acoustic sensors. The subject matter described herein can include modulating a signal provided to a motor to provide a communication signal to be mechani­cally (e.g., acoustically) emitted …


Propulsion System Testing For A Long-Endurance Solar-Powered Unmanned Aircraft, D. Dantsker, Robert Deters, Marco Caccamo Jun 2019

Propulsion System Testing For A Long-Endurance Solar-Powered Unmanned Aircraft, D. Dantsker, Robert Deters, Marco Caccamo

Publications

The increase in popularity of unmanned aerial vehicles (UAVs) has been driven by their use in civilian, education, government, and military applications. However, limited on-board energy storage significantly limits flight time and ultimately usability. The propulsion system plays a critical part in the overall energy consumption of the UAV; therefore, it is necessary to determine the most optimal combination of possible propulsion system components for a given mission profile, i.e. propellers, motors, and electronic speed controllers (ESC). Hundreds of options are available for the different components with little performance specifications available for most of them. In order to determine the …


Systems And Methods For Noise Mitigation For Hybrid And Electric Aircraft, Lenny Gartenberg, Richard P. Anderson, Borja Martos Nov 2018

Systems And Methods For Noise Mitigation For Hybrid And Electric Aircraft, Lenny Gartenberg, Richard P. Anderson, Borja Martos

Publications

A system and method of noise mitigation for hybrid and electric aircraft, the aircraft having a controllable pitch propeller or rotor(s) with a plurality of blades. The propeller or rotor(s) are driven by a drive system to provide thrust for the aircraft, and the blades of the propeller or rotor(s) are further movable about pivot axis to vary a pitch thereof. A controller on-board the aircraft is operable to cause rotation or movement of the blades of the propeller or rotor(s) about their pivot axis to alter and/or focus at least one aspect of the propeller generated noise to reduce …


Floating Active Baffles, System And Method Of Slosh Damping Comprising The Same, Dae Won Kim, Rudy L. Baum, Vijay Santhanam, Balaji Sivasubramanian, Sathya Gangadharan Sep 2018

Floating Active Baffles, System And Method Of Slosh Damping Comprising The Same, Dae Won Kim, Rudy L. Baum, Vijay Santhanam, Balaji Sivasubramanian, Sathya Gangadharan

Publications

This disclosure provides a system for damping slosh of a liquid within a tank, a baffle for use in the system, and a method of damping slosh using the system. The system includes a plurality of baffles. Each baffle has a body configured to substantially float upon the liquid. Each baffle also has an activation material received along at least a portion of the body. The activation material is magnetically reactive provided in a quantity sufficient to enable the body to be manipulated in the presence of a magnetic field (M). The system further includes an actuator configured to pro­vide …


Experiments Of Propeller-Induced Flow Effects On A Low-Reynolds-Number Wing, Gavin K. Ananda, Robert Deters, Michael S. Selig Aug 2018

Experiments Of Propeller-Induced Flow Effects On A Low-Reynolds-Number Wing, Gavin K. Ananda, Robert Deters, Michael S. Selig

Publications

Novel findings are discussed in this paper that will be especially beneficial to designers and modelers of small-scale unmanned air vehicles and high-altitude long-endurance vehicles that both operate at low Reynolds numbers (Re = 50,000-300,000). Propeller-induced Oow effects in both tractor and pusher configurations on a recta ngular wing using the Wortmann FX 63-137 airfoil (a common low-Reynolds-number high-lift airfoil) are presented in this paper . Significant performance benefits can be found for a wing in the tractor configuration. Experiments, including trip tests and upper-surface oil Dow visualization, show and verify that the propeller slipstream induces early transition to turbulent …


Algal Biofuel: The Future Of Green Jet Fuel In Air Transportation, Rajee Olaganathan Apr 2018

Algal Biofuel: The Future Of Green Jet Fuel In Air Transportation, Rajee Olaganathan

Publications

The aviation industry is one of the major contributors for the greenhouse gases. As air travel has become inevitable in this modern era, and fossil fuel usage is not sustainable, it is essential to produce renewable fuel and commercialize it to reduce the greenhouse gas emissions. In order to produce an alternate aviation biofuel a lot of industrial and academic collaborations have been developed worldwide. The main concern of this collaborative research is to produce aviation biofuel from renewable resources with low environmental impacts, and which is sustainable at an economically viable price. This mini-review briefly discusses the biotechnological approaches …


Unmanned Aerial Systems: Research, Development, Education & Training At Embry-Riddle Aeronautical University, Michael P. Hickey Jan 2018

Unmanned Aerial Systems: Research, Development, Education & Training At Embry-Riddle Aeronautical University, Michael P. Hickey

Publications

With technological breakthroughs in miniaturized aircraft-related components, including but not limited to communications, computer systems and sensors, state-of-the-art unmanned aerial systems (UAS) have become a reality. This fast-growing industry is anticipating and responding to a myriad of societal applications that will provide new and more cost-effective solutions that previous technologies could not, or will replace activities that involved humans in flight with associated risks.

Embry-Riddle Aeronautical University has a long history of aviation-related research and education, and is heavily engaged in UAS activities. This document provides a summary of these activities, and is divided into two parts. The first part …


Take-Off Characteristics For Naca 4612 Aerofoil In A Twin-Wing Configuration With Optimum Angles Of Attack, Elena Vishnevskaya, Kenneth L. Witcher, Ian R. Mcandrew Jan 2018

Take-Off Characteristics For Naca 4612 Aerofoil In A Twin-Wing Configuration With Optimum Angles Of Attack, Elena Vishnevskaya, Kenneth L. Witcher, Ian R. Mcandrew

Publications

Unmanned Aerial Vehicles are used generally at low levels and speeds. The research reported in this article investigates the possible use of twin-wing designs for higher altitudes with a focus on the possible lift capable for either short runways or high payloads. The wing aerofoil and unique Angles of Attack, AoA, are set 5o on the upper wing and 10o on the lower. There is a positive upper wing stagger of 50% of the chord length at height separation of 1 chord. These parameters have been established from previous research and this research investigates how they generate lift at take-off …


Time Optimal State Feedback Control With Application To A Spacecraft With Cold Gas Propulsion, Samuel J. Kitchen-Mckinley, Sergey V. Drakunov Jul 2017

Time Optimal State Feedback Control With Application To A Spacecraft With Cold Gas Propulsion, Samuel J. Kitchen-Mckinley, Sergey V. Drakunov

Publications

A cold gas propulsion system is well suited to provide the required thrust for a small surveyor spacecraft operated near an asteroid or planetary surface. The cold gas propellant can obtained in-situ from local surface or atmospheric constituents. For small spacecraft, the cold gas system may be limited to only on-off control of the main tank where the generated thrust is directly dependent on the tank pressure. As such the thrust will slowly decrease as the propellant is expended. A state feedback, time optimal, control law is developed for a vehicle with propellant is expended. A state feedback, time optimal, …


Optimizing Jets For Wake Control Of Ground Vehicles, Domenic Barsotti, Sandra Boetcher Mar 2017

Optimizing Jets For Wake Control Of Ground Vehicles, Domenic Barsotti, Sandra Boetcher

Publications

A system of wake control for a ground vehicle to help promote increased fuel efficiencies of the ground vehicle by modifying an air flow wake generated during the movement of the vehicle in a forward direction. The system includes at least one slot jet configured to be located along a rear profile portion of the ground vehicle. The at least one slot jet is configured to provide a continuous flow of air at a non-zero velocity when the ground vehicle is moving in a forward direction, the non-zero velocity being at least partially directed in a rearward direction with an …


Multi-Stage Axial Compressor With Counter-Rotation, Vinod Gehlot, Magdy S. Attia, Divyam Garg Jan 2017

Multi-Stage Axial Compressor With Counter-Rotation, Vinod Gehlot, Magdy S. Attia, Divyam Garg

Publications

A multi-stage axial compressor incorporating a counter­rotational movement is provided with a series of rotors mounted along and driven by a driveshaft, and a geared counter-rotating outer casing. A planetary gear system is assembled along a static casing, which can be assembled as a forward or aft casing for the compressor. The bearings of the planetary gear system typically will be aligned concen­trically with a center rotor drum assembly mounted along the single driveshaft. The counter-rotating drum assembly will be assembled over the rotor drum assembly and will be engaged by the forward and aft casings so as to provide …


Electrically Coupled Counter-Rotation For Gas Turbine Compressors, Vinod Gehlot Jun 2016

Electrically Coupled Counter-Rotation For Gas Turbine Compressors, Vinod Gehlot

Publications

A system and method for implementing stage-by-stage counter rotation in a multi-stage axial compressor of a gas turbine engine. The system includes an electrical power gen­erator and an electric motor. A turbine-driven shaft connected to an armature of the electrical generator drives a first plural­ity of compressor blades. The electrical generator armature induces changing magnetic flux in the stator coils of the electrical generator which generates electrical power that is sent to a power control module. The power control module controls the electrical motor and excites the coils in the elec­tric motor stator which drives the electric motor armature. The …


Multi-Stage Axial Compressor With Counter-Rotation Using Accessory Drive, Vinod Gehlot, Magdy S. Attia May 2016

Multi-Stage Axial Compressor With Counter-Rotation Using Accessory Drive, Vinod Gehlot, Magdy S. Attia

Publications

A multi-stage axial compressor for counter rotation. A first series of rotor blade assemblies are mounted on and rotate with the driveshaft, each rotor blade assembly of the first series comprising a rotating stage of the multi-stage axial compressor. A second series of rotor blade assemblies pro­vide a counter-rotating stage of the multi-stage axial com­pressor. An accessory drive links the second series of rotor blade assemblies to the driveshaft and causes counter-rotation of the second series of rotor blade assemblies.


Hybrid Clutch Assembly For An Aircraft, Richard Anderson, Charles N. Eastlake, Matt Gonitzke, Glenn P. Greiner Feb 2016

Hybrid Clutch Assembly For An Aircraft, Richard Anderson, Charles N. Eastlake, Matt Gonitzke, Glenn P. Greiner

Publications

A hybrid clutch assembly inserted between an internal com­bustion engine and the propeller of an aircraft to provide a hybrid-powered aircraft. The hybrid clutch assembly allows a direct current (DC) electric motor to be attached to the hybrid clutch assembly using drive belts. The hybrid clutch assembly allows the internal combustion engine to transmit power to the aircraft's propeller and freely spin the DC motor. The DC motor can transmit power to the aircraft's propeller without turning the internal combustion engine. The hybrid clutch assembly independently allows either the internal combus­tion engine or the DC motor in parallel to power …


Hybrid Assembly For An Aircraft, Richard P. Anderson, Lori Costello, Charles Eastlake, Glenn P. Greiner Aug 2015

Hybrid Assembly For An Aircraft, Richard P. Anderson, Lori Costello, Charles Eastlake, Glenn P. Greiner

Publications

A propeller driven aircraft powered by either an internal combustion engine or an electric motor. The parallel system hybrid aircraft can takeoff with the internal combustion engine and climb to a cruising altitude. The internal combus­tion engine then can be turned off and the electric motor turned on to power the aircraft's propeller. The aircraft is capable of alternating operation between the electric motor and internal combustion engine as often as required at alti­tude. The aircraft can be landed using either the internal combustion engine or the electric motor. The transition of power from the internal combustion engine to the …


Lift Generating Device, Juan A. Alvarado Apr 2015

Lift Generating Device, Juan A. Alvarado

Publications

A lift generating device is provided enabling vertical flight. The lift generating device includes a first revolution structure having a funnel shape and a second revolution structure hav­ing a funnel shape. Each revolution structure includes a cir­cular open surface and an open stem. The second revolution structure is attached to the first revolution structure by a plurality of connectors so as to form a gap between the first revolution structure and the second revolution structure. A propeller is coupled to an open stem at a bottom end of the first revolution structure and a motor is operatively connected to the …


Unmanned Aerial Vehicle (Uav) Propulsion Research: Conceptual Studies Of “Ultra-Compact Shaft-Less Jet Engines” For Next Generation Uavs, Tyler Eiguren, Trevor Douglas, Tre Buchanan Apr 2015

Unmanned Aerial Vehicle (Uav) Propulsion Research: Conceptual Studies Of “Ultra-Compact Shaft-Less Jet Engines” For Next Generation Uavs, Tyler Eiguren, Trevor Douglas, Tre Buchanan

Publications

Unmanned Aerial Vehicles are becoming more commonly used in today’s society, ranging anywhere from military applications to entertainment for enthusiasts and hobbyists. The complexity of current generation UAV’s propulsive devices, based upon a scaled turbine engine and separate gas & electrically powered rotating fan blades, require regular maintenance for every 24 hours of flight. This added cost coupled with necessary intricate machinery deters UAV designers from such engines, leaving a void in current production. Our research team believes that by combining a simplified alternative compression & combustion process with an electrically driven fan, we can develop an energy efficient, reliable, …


The Panther: 2015 Aiaa Design Build Fly, Bryce Milnes, Chris Crawford Apr 2015

The Panther: 2015 Aiaa Design Build Fly, Bryce Milnes, Chris Crawford

Publications

The ERAU Prescott chapter of AIAA participated in the 2015 AIAA Design Build Fly competition at Raytheon Missile Systems in Tucson from April 10-12. A remote controlled aircraft meeting and exceeding all competition performance requirements was designed and fabricated by the 30+ students of the team. Additionally, a 60 page report was submitted detailing the project starting from initial considerations and advancing through flight test verification of aircraft capabilities. The success of this project was enabled by the E-Prize and SGA funding received to support our efforts throughout the year. The lessons learned regarding management and planning, engineering design approaches, …


Multi-Stage Axial Compressor With Counter-Rotation Using Accessory Drive, Vinod Gehlot, Magdy S. Attia Sep 2014

Multi-Stage Axial Compressor With Counter-Rotation Using Accessory Drive, Vinod Gehlot, Magdy S. Attia

Publications

A multi-stage axial compressor for counter rotation. A first series of rotor blade assemblies are mounted on and rotate with the driveshaft, each rotor blade assembly of the first series comprising a rotating stage of the multi-stage axial compressor. A second series of rotor blade assemblies provide a counter-rotating stage of the multi-stage axial compressor. An accessory drive links the second series of rotor blade assemblies to the driveshaft and causes counter-rotation of the second series of rotor blade assemblies.


Multi-Stage Axial Compressor With Counter-Rotation, Vinod Gehlot, Magdy S. Attia, Divyam Garg Aug 2013

Multi-Stage Axial Compressor With Counter-Rotation, Vinod Gehlot, Magdy S. Attia, Divyam Garg

Publications

A multi-stage axial compressor incorporating a counter-rota­tional movement is provided with a series of rotors mounted along and driven by a driveshaft, and a geared counter-rotat­ing outer casing. A planetary gear system is assembled along a static casing, which can be assembled as a forward or aft casing for the compressor. The bearings of the planetary gear system typically will be aligned concentrically with a center rotor drum assembly mounted along the single driveshaft. The counter-rotating drum assembly will be assembled over the rotor drum assembly and will be engaged by the forward and aft casings so as to provide …


Heavy-Fueled Intermittent Ignition Engines: Technical Issues, Jeffrey Arthur Schneider, Timothy Wilson, Christopher Griffis, Peter Pierpont Sep 2009

Heavy-Fueled Intermittent Ignition Engines: Technical Issues, Jeffrey Arthur Schneider, Timothy Wilson, Christopher Griffis, Peter Pierpont

Publications

This report contains an overview of the technology and engineering issues with nonturbine heavy-fueled engines for general aviation aircraft and Unmanned Aircraft Systems. In recent years, interest in these types of engines has grown, partly due to the cost, safety, and worldwide availability of gasoline fuels. Within 3 to 5 years, up to five engines will seek Federal Aviation Administration certification as heavy-fuel powerplants. Although there has been some progress, there is no universal standard for certification of these engines (under Title 14 Code of Federal Regulations (CFR) Part 33), or their installation into normal category fixed-wing aircraft or rotorcraft …


Unmanned Aircraft System Propulsion Systems Technology Survey, Christopher Griffis, Timothy Wilson, Jeffrey Schneider, Peter Pierpont Sep 2009

Unmanned Aircraft System Propulsion Systems Technology Survey, Christopher Griffis, Timothy Wilson, Jeffrey Schneider, Peter Pierpont

Publications

This technology survey is an investigation of various propulsion systems used in Unmanned Aircraft Systems (UAS). Discussed are existing and near-future propulsion mechanisms of UAS, such as reciprocating piston engines, Wankel rotary engines, gas turbine engines, rocket-powered systems, electric motors, and battery-based systems. Also discussed are systems that use proton exchange membrane fuel cells, photovoltaics, ultracapacitors, and propellers. Each system is described in reference to a larger conceptual framework, with instances and profiles of existing UAS employing the system being described. Advantages and disadvantages of each type of propulsion system are identified along with associated technical issues and their respective …


Internet Enabled Remote Driving Of A Combat Hybrid Electric Power System For Duty Cycle Measurement, Jarrett Goodell, Marc Compere, Wilford Smith, Mark Brudnak, Mike Pozolo, Et Al. Jun 2007

Internet Enabled Remote Driving Of A Combat Hybrid Electric Power System For Duty Cycle Measurement, Jarrett Goodell, Marc Compere, Wilford Smith, Mark Brudnak, Mike Pozolo, Et Al.

Publications

This paper describes a human-in-the-loop motion-based simulator interfaced to hybrid-electric power system hardware, both of which were used to measure the duty cycle of a combat vehicle in a virtual simulation environment. The project discussed is a greatly expanded follow-on to the experiment published in [1,7]. This paper is written in the context of [1,7] and therefore highlights the enhancements. The most prominent of these enhancements is the integration (in real-time) of the Power & Energy System Integration Lab (P&E SIL) with a motion base simulator by means of a “long haul” connection over the Internet (a geographical distance of …


Soldier/Hardware-In-The-Loop Simulation-Based Combat Vehicle Duty Cycle Measurement: Duty Cycle Experiment 2, Mark Brudnak, Mike Pozolo, Victor Paul, Syed Mohammad, Marc Compere, Et Al. Jan 2007

Soldier/Hardware-In-The-Loop Simulation-Based Combat Vehicle Duty Cycle Measurement: Duty Cycle Experiment 2, Mark Brudnak, Mike Pozolo, Victor Paul, Syed Mohammad, Marc Compere, Et Al.

Publications

This paper describes a human-in-the-loop motion-based simulator interfaced to hybrid-electric power system hardware both of which were used to measure the duty cycle of a combat vehicle in a virtual simulation environment. The project discussed is a greatly expanded follow-on to the experiment published in [1]. This paper is written in the context of [1] and therefore highlights the enhancements. The most prominent of these enhancements is the integration (in real-time) of the Power & Electric System Integration Lab (P&E SIL) with a motion base simulator by means of a “long haul” connection over the Internet (a geographical distance of …