Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Power and Energy

PDF

Photovoltaics

Institution
Publication Year
Publication
Publication Type

Articles 1 - 28 of 28

Full-Text Articles in Engineering

Photovoltaics And Battery-Based End-To-End Direct Current Sustainable Power Networks- Concept, Design, And Control, Vishwas Powar May 2024

Photovoltaics And Battery-Based End-To-End Direct Current Sustainable Power Networks- Concept, Design, And Control, Vishwas Powar

All Dissertations

The consequences of climate change have emphasized the need for a power network that is centered around green, low-cost, and renewable sources of energy. Currently, photovoltaics (PV) and wind turbines are the only two technologies that can convert renewable energy from the sun and wind, respectively, into large-scale power for the electricity network. This dissertation aims to provide a novel solution to implement direct current-based architecture for PV generation coupled with lithium-ion battery storage in an efficient and sustainable manner. Such a power network can enable efficiency, reliability, low cost, and sustainability with minimum impact on the environment. The first …


Vertical Free-Swinging Photovoltaic Racking Energy Modeling: A Novel Approach To Agrivoltaics, Koami Soulemane Hayibo, Joshua M. Pearce Dec 2023

Vertical Free-Swinging Photovoltaic Racking Energy Modeling: A Novel Approach To Agrivoltaics, Koami Soulemane Hayibo, Joshua M. Pearce

Electrical and Computer Engineering Publications

To enable lower-cost building materials, a free-swinging bifacial vertical solar photovoltaic (PV) rack has been proposed, which complies with Canadian building codes and is the lowest capital-cost agrivoltaics rack. The wind force applied to the free-swinging PV, however, causes it to have varying tilt angles depending on the wind speed and direction. No energy performance model accurately describes such a system. To provide a simulation model for the free-swinging PV, where wind speed and direction govern the array tilt angle, this study builds upon the open-source System Advisor Model (SAM) using Python. After the SAM python model is validated, a …


Statistical Analysis And Degradation Pathway Modeling Of Photovoltaic Minimodules With Varied Packaging Strategies, Sameera Nalin Venkat, Xuanji Yu, Jiqi Liu, Jakob Wegmueller, Jayvic Cristian Jimenez, Erika I. Barcelos, Hein Htet Aung, Roger H. French, Laura S. Bruckman Mar 2023

Statistical Analysis And Degradation Pathway Modeling Of Photovoltaic Minimodules With Varied Packaging Strategies, Sameera Nalin Venkat, Xuanji Yu, Jiqi Liu, Jakob Wegmueller, Jayvic Cristian Jimenez, Erika I. Barcelos, Hein Htet Aung, Roger H. French, Laura S. Bruckman

Faculty Scholarship

Degradation pathway models constructed using network structural equation modeling (netSEM) are used to study degradation modes and pathways active in photovoltaic (PV) system variants in exposure conditions of high humidity and temperature. This data-driven modeling technique enables the exploration of simultaneous pairwise and multiple regression relationships between variables in which several degradation modes are active in specific variants and exposure conditions. Durable and degrading variants are identified from the netSEM degradation mechanisms and pathways, along with potential ways to mitigate these pathways. A combination of domain knowledge and netSEM modeling shows that corrosion is the primary cause of the power …


Performance And Economics Of Solar Inverters And Module Level Power Electronics In A 1 Mw Photovoltaic System, Maxwell Criswell May 2021

Performance And Economics Of Solar Inverters And Module Level Power Electronics In A 1 Mw Photovoltaic System, Maxwell Criswell

Biological and Agricultural Engineering Undergraduate Honors Theses

Photovoltaic solar panels convert sunlight to electricity in the form of direct current; therefore, a necessary component of every photovoltaic system is an inverter to convert the electricity to usable alternating current. There are various commercially available inverter technologies manufactured today such as microinverters, string inverters, and central inverters, as well as module level power electronic devices such as DC optimizers that are capable of improving system performance in string and central inverter systems. This thesis compares the performance and economics of five different inverter and module level power electronic systems through model simulation using Helioscope software. The five alternatives …


Modeling Energy Flows In Floating In-Pond Raceways Utilizing Solar Power Back-Up, Bo Smith Jan 2021

Modeling Energy Flows In Floating In-Pond Raceways Utilizing Solar Power Back-Up, Bo Smith

Theses and Dissertations--Biosystems and Agricultural Engineering

The In-pond Raceway (IPR) is a novel option for production aquaculture, depending on water moving devices to provide constant flow. Device failure may result in catastrophic fish loss, requiring power backup systems to mitigate risk in case of power outages. Because these systems must be dependable and many suitable locations are remote, off-grid solar photovoltaic (PV) systems with battery storage have been considered since they eliminate need for utility power. Such systems can be hard to size and expensive. This study modeled system requirements using an energy balance to determine whether systems could withstand varying loads based on climatological conditions. …


Transmission-Level Impact Analysis Of Utility-Scale Solar Photovoltaic Systems And Battery Energy Storage Grid Support, Gerald W. Bankes Ii Jan 2021

Transmission-Level Impact Analysis Of Utility-Scale Solar Photovoltaic Systems And Battery Energy Storage Grid Support, Gerald W. Bankes Ii

Theses and Dissertations--Electrical and Computer Engineering

Solar photovoltaic energy generation is expected to grow dramatically in coming years in order to take advantage of renewable and clean sources of electricity. This thesis presents research on the impact of increasing solar PV penetration, specifically of large, utility-scale PV facilities, on transmission network performance. The development of Python programming tools for automation of power flow analysis is presented. A modified version of the IEEE 118-Bus test system is developed and modified to simulate increasing PV generation on the transmission system. The impacts on performance are analyzed trends are reported. Battery energy storage systems are studied in this thesis …


Cost Analysis Of Optimized Islanded Energy Systems In A Dispersed Air Base Conflict, Jay F. Pearson, Torrey J. Wagner, Justin D. Delorit Sep 2020

Cost Analysis Of Optimized Islanded Energy Systems In A Dispersed Air Base Conflict, Jay F. Pearson, Torrey J. Wagner, Justin D. Delorit

Faculty Publications

The United States Air Force has implemented a dispersed air base strategy to enhance mission effectiveness for near-peer conflicts. Asset dispersal places many smaller bases across a wide geographic area, which increases resupply requirements and logistical complexity. Hybrid energy systems reduce resupply requirements through sustainable, off-grid energy production. This paper presents a novel hybrid energy renewable delivery system (HERDS) model capable of (1) selecting the optimal hybrid energy system design that meets demand at the lowest net present cost and (2) optimizing the delivery of the selected system using existing Air Force cargo aircraft. The novelty of the model’s capabilities …


Machine Learning Modeling Of Horizontal Photovoltaics Using Weather And Location Data, Christil Pasion, Torrey J. Wagner, Clay Koschnick, Steven J. Schuldt, Jada B. Williams, Kevin Hallinan May 2020

Machine Learning Modeling Of Horizontal Photovoltaics Using Weather And Location Data, Christil Pasion, Torrey J. Wagner, Clay Koschnick, Steven J. Schuldt, Jada B. Williams, Kevin Hallinan

Faculty Publications

Solar energy is a key renewable energy source; however, its intermittent nature and potential for use in distributed systems make power prediction an important aspect of grid integration. This research analyzed a variety of machine learning techniques to predict power output for horizontal solar panels using 14 months of data collected from 12 northern-hemisphere locations. We performed our data collection and analysis in the absence of irradiation data—an approach not commonly found in prior literature. Using latitude, month, hour, ambient temperature, pressure, humidity, wind speed, and cloud ceiling as independent variables, a distributed random forest regression algorithm modeled the combined …


Improving Pv Module Efficiency Through Cooling, Ashley Cox May 2020

Improving Pv Module Efficiency Through Cooling, Ashley Cox

Chemical Engineering Undergraduate Honors Theses

The Solarbacks researched and designed a variety of cooling methods that could be used to improve the efficiency of photovoltaics. These cooling methods can be separated into two categories: active and passive methods. The active cooling method of hydraulic cooling and the passive cooling methods of heat sinks (fins), optical coatings, thermosyphons, phase change materials, and thermoelectric generators were all taken into consideration as potential cooling methods. Passive cooling methods were preferred because the use of electricity required for the cooling mechanism would reduce the net electricity and subsequent profit from the panels.

Two variations of hydraulic cooling were researched: …


Improving Pv Module Efficiency Through Cooling, Harrison Dawson May 2020

Improving Pv Module Efficiency Through Cooling, Harrison Dawson

Chemical Engineering Undergraduate Honors Theses

The Solarbacks researched and designed a variety of cooling methods that could be used to improve the efficiency of photovoltaics. These cooling methods can be separated into two categories: active and passive methods. The active cooling method of hydraulic cooling and the passive cooling methods of heat sinks (fins), optical coatings, thermosyphons, phase change materials, and thermoelectric generators were all taken into consideration as potential cooling methods. Passive cooling methods were preferred because the use of electricity required for the cooling mechanism would reduce the net electricity and subsequent profit from the panels.

Two variations of hydraulic cooling were researched: …


Golng Off The Grid: Optimizing Solar Renewable Energy Systems At Remote Locations To Minimize Logistics Requirements, Increase Sustainability, And Strengthen Energy Assurance, Nathanael J. Thomsen Mar 2020

Golng Off The Grid: Optimizing Solar Renewable Energy Systems At Remote Locations To Minimize Logistics Requirements, Increase Sustainability, And Strengthen Energy Assurance, Nathanael J. Thomsen

Theses and Dissertations

Grid-based electrical infrastructure is unavailable at many remote locations including developing nation communities, isolated construction sites, and military contingency bases. Powering these locations with diesel generators requires regular fuel resupply, resulting in increased costs, environmental impacts, and burdensome logistics—making generators an obstacle for energy resiliency and sustainability. This research examines using solar renewable energy systems to replace generators at remote locations and presents a multi-objective optimization model that minimizes logistics variables. Replacing a single deployed generator would save over 500,000 gal of fuel annually, eliminating the need for 100 fuel tanker deliveries.


Tailoring The Grain Boundaries Of Wide-Bandgap Perovskite Solar Cells By Molecular Engineering, Khalid Emshadi Jan 2020

Tailoring The Grain Boundaries Of Wide-Bandgap Perovskite Solar Cells By Molecular Engineering, Khalid Emshadi

Electronic Theses and Dissertations

Due to the attraction of fabricating highly efficient tandem solar cells, wide-bandgap perovskite solar cells have attracted substantial interest in recent years. However, polycrystalline perovskite thin-films show the existence of trap states at grain boundaries, which diminish the optoelectronic properties of the perovskite and thus remains a challenge. This research demonstrates a one-step solution-processing of the [MA0.9Cs0.1Pb(I0.6Br0.4)3] wide-bandgap perovskite using Phenylhydrazine Iodide with amino groups to successfully passivate the trap density within grain boundaries and increase the perovskite grain size. The reinforced morphology and grain boundaries treatment considerably enhanced the photovoltaic performance …


Characterization Of Contact Resistance Properties Of Different Tlm Structure Designs, Nicole A. Karam Pannaci Jan 2020

Characterization Of Contact Resistance Properties Of Different Tlm Structure Designs, Nicole A. Karam Pannaci

Digital Repository: Showcase of Undergraduate Research Excellence

No abstract provided.


Performance Of A Campus Photovoltaic Electric Vehicle Charging Station In A Temperate Climate, Ayda Esfandyari, Brian Norton, Michael Conlon, Sarah J. Mccormack Jan 2019

Performance Of A Campus Photovoltaic Electric Vehicle Charging Station In A Temperate Climate, Ayda Esfandyari, Brian Norton, Michael Conlon, Sarah J. Mccormack

Articles

A photovoltaic (PV) array can be combined with battery energy storage to satisfy the electrical demand of lightweight electric vehicles. Measured solar resource and vehicle energy consumption, together with locational, mechanical and electrical constraints were used to design a vehicle charging station comprised of a 63 m2 10.5 kW AC PV array, with a 9.6 kWh lithium-ion battery. PV output, battery charge and discharge, electricity flows were monitored over one year. Deviations between measured and calculated annual AC generation averaged to 14%. Average annual direct consumption, self-consumption and system self-sufficiency were 8.47%, 30.3% and 74.36% respectively.


Advanced Modeling, Design, And Control Of Ac-Dc Microgrids, Hossein Saberi Khorzoughi Apr 2018

Advanced Modeling, Design, And Control Of Ac-Dc Microgrids, Hossein Saberi Khorzoughi

LSU Doctoral Dissertations

An interconnected dc grid that comprises resistive and constant-power loads (CPLs) that is fed by Photovoltaic (PV) units is studied first. All the sources and CPLs are connected to the grid via dc-dc buck converters. Nonlinear behavior of PV units in addition to the effect of the negative-resistance CPLs can destabilize the dc grid. A decentralized nonlinear model and control are proposed where an adaptive output-feedback controller is employed to stabilize the dc grid with assured stability through Lyapunov stability method while each converter employs only local measurements. Adaptive Neural Networks (NNs) are utilized to overcome the unknown dynamics of …


A Novel Power Sharing Control Method For Distributed Generators In Dc Networks, Christina James Jan 2018

A Novel Power Sharing Control Method For Distributed Generators In Dc Networks, Christina James

Electrical & Computer Engineering Theses & Dissertations

The power sharing control method is a desirable solution to integrate multiple renewable energy generators into the grid and to keep them working synchronously. Power sharing control between different distributed generators is an important consideration for the stabilized operation of the power grid network. In this thesis work, a novel method is used with the concept of droop control technique and is designed to control power from each individual generator in DC network particularly. The proposed power sharing control method can be widely applied to grid connected network and to islanded power grid network for obtaining high efficiency of power …


Multi-Mw Solar Pv Pumping System With Capacity Modulation And Battery Voltage Support, Oluwaseun M. Akeyo, Vandana Rallabandi, Dan M. Ionel Nov 2017

Multi-Mw Solar Pv Pumping System With Capacity Modulation And Battery Voltage Support, Oluwaseun M. Akeyo, Vandana Rallabandi, Dan M. Ionel

Power and Energy Institute of Kentucky Faculty Publications

Solar photovoltaic (PV) renewable energy systems are undergoing major technological developments and large-scale field deployment and electric grid integration. This paper proposes a method of expanding the capacity of an existing irrigation farm with additional pumps powered by solar PV. The system includes PV arrays and battery energy storage connected to a common dc bus, which energizes an array of variable speed inverter driven pumps. Capacity modulation is achieved by energizing an optimal number of pumps required in order to meet a particular load demand with minimum supply energy. A grid connection to the dc bus of the power electronic …


Reduction In Recombination Current Density In Boron Doped Silicon Using Atomic Hydrogen, Matthew Garett Young May 2017

Reduction In Recombination Current Density In Boron Doped Silicon Using Atomic Hydrogen, Matthew Garett Young

Graduate Theses and Dissertations

The solar industry has grown immensely in recent years and has reached a point where solar energy has now become inexpensive enough that it is starting to emerge as a mainstream electrical generation source. However, recent economic analysis has suggested that for solar to become a truly wide spread source of electricity, the costs still need to plummet by a factor of 8x. This demands new and innovative concepts to help lower such cost. In pursuit of this goal, this dissertation examines the use of atomic hydrogen to lessen the recombination current density in the boron doped region of n-type …


Analysis And Simulation Of Photovoltaic Systems Incorporating Battery Energy Storage, Oluwaseun M. Akeyo Jan 2017

Analysis And Simulation Of Photovoltaic Systems Incorporating Battery Energy Storage, Oluwaseun M. Akeyo

Theses and Dissertations--Electrical and Computer Engineering

Solar energy is an abundant renewable source, which is expected to play an increasing role in the grid's future infrastructure for distributed generation. The research described in the thesis focuses on the analysis of integrating multi-megawatt photovoltaics (PV) systems with battery energy storage into the existing grid and on the theory supporting the electrical operation of components and systems. The PV system is divided into several sections, each having its own DC-DC converter for maximum power point tracking and a two-level grid connected inverter with different control strategies. The functions of the battery are explored by connecting it to the …


Engineering Of Photo-Rechargeable Energy Storage, Ashim Gurung Jan 2017

Engineering Of Photo-Rechargeable Energy Storage, Ashim Gurung

Electronic Theses and Dissertations

Solar photovoltaics (PV) is a very promising renewable energy technologies as it is abundant and pollution-free. However, the major drawback of PV power is its intermittency. Integration of batteries with solar modules can reduce overall PV system costs and increase the practicality of PV power. Integration of the photovoltaic cells with supercapacitor storage proved feasibility of combined photovoltaic energy generation and storage but the supercapacitors had low energy storage capacity. Photovoltaic cells with integrated Li-ion batteries as energy storage were demonstrated but had a complex structure due to multiple PV cells; low efficiency due to a mismatch between the PV …


Solar Irradiance Forecasting And Implications For Domestic Electric Water Heating, Christopher Nutter Jan 2017

Solar Irradiance Forecasting And Implications For Domestic Electric Water Heating, Christopher Nutter

Electronic Theses and Dissertations

As the effects of burning fossil fuels continues to present its prevalence, the interests in alternative forms of energy is expanding. Within the home, the domestic electrical water heater accounts for approximately 17% of its energy consumption. Reducing the amount of energy required to produce hot water from this thermal system alone can have a significant effect on reducing its carbon footprint. In this presented work, a modeled domestic electrical water heater was supplied photovoltaic and on-grid electrical power to increase its energy efficiency. As photovoltaic (PV) energy is directly related to solar irradiation, it is important to receive accurate …


Top-Down Aluminum Induced Crystallization For Photovoltaics, Seth Daniel Shumate May 2015

Top-Down Aluminum Induced Crystallization For Photovoltaics, Seth Daniel Shumate

Graduate Theses and Dissertations

Passivating silicon solar cell surfaces is critical to fabricating very high efficiency and low cost photovoltaic devices. The sun-facing surface of the solar cell, known as the emitter, is particularly important when designing a solar cell. This work focused first on an alternative method of forming the emitter of silicon solar cells, and secondly on a method for improving the surface passivation of both these non-traditional and standard n-type solar cells.

Top-down aluminum induced crystallization (TAIC) was used for forming a polycrystalline silicon layer from amorphous silicon using aluminum to catalyze the crystallization at much lower temperatures than otherwise possible. …


An Autonomous Online I-V Tracer For Pv Monitoring Applications, Cameron William Riley Dec 2014

An Autonomous Online I-V Tracer For Pv Monitoring Applications, Cameron William Riley

Masters Theses

With the unprecedented growth of photovoltaic technologies and their implementation in recent times, more precise methods of determining modules health, degradation, and performance are needed. Current monitoring efforts are helpful in determining these attributes but do not provide all of the information necessary to truly understand the health properties of the PV module in question. The current-voltage curve, or I-V curve, provides a level of insight into a PV module’s health unparalleled by most monitoring efforts. However, the tools which measure the I-V curve exist in an undesirable form—PV must be disconnected from its load and connected to the tool …


The Sun Also Rises: Prospects For Solar District Heating In The United States, Adam L. Reed, John S. Mccartney Jan 2014

The Sun Also Rises: Prospects For Solar District Heating In The United States, Adam L. Reed, John S. Mccartney

Kevin L Doran

Renewable thermal energy remains a largely untapped resource in the United States, despite its low costs and growing popularity in many other countries and the pressing need to rapidly deploy and scale carbon-free energy sources in order to mitigate anthropogenic climate change. In this article, an energy attorney and a civil engineer collaborate to examine the prospects in the United States for solar district heating (SDH), a thermal technology that leverages economies of scale to provide zero-carbon, round-the-clock space and water heating (on average, the two largest components of building energy demand) to neighborhoods and commercial zones at costs competitive …


Enhancing The Performance Of Building Integrated Photovoltaics, Brian Norton, Philip C. Eames, Tapas K. Mallick, Ming Jun Huang, Sarah J. Mccormack, Jayanta D. Mondol, Yigzaw G. Yohanis Aug 2011

Enhancing The Performance Of Building Integrated Photovoltaics, Brian Norton, Philip C. Eames, Tapas K. Mallick, Ming Jun Huang, Sarah J. Mccormack, Jayanta D. Mondol, Yigzaw G. Yohanis

Articles

Recent research in Building Integrated Photovoltaics (BIPV) is reviewed with the emphases on a range of key systems whose improvement would be likely to lead to improved solar energy conversion efficiency and/or economic viability. These include invertors, concentrators and thermal management systems. Advances in techniques for specific aspects of systems design, installation and operation are also discussed.


Improving The Efficiency Of Organic Solar Cells By Varying The Material Concentration In The Photoactive Layer, Kevin Anthony Latimer Jul 2011

Improving The Efficiency Of Organic Solar Cells By Varying The Material Concentration In The Photoactive Layer, Kevin Anthony Latimer

Electrical & Computer Engineering Theses & Dissertations

Polymer-fullerene bulk heterojunction solar cells have been a rapidly improving technology over the past decade. To further improve the relatively low energy conversion efficiencies of these solar cells, several modifications need to be made to the overall device structure. Emerging technologies include cells that are fabricated with interfacial layers to facilitate charge transport, and tandem structures are being introduced to harness the absorption spectrum of polymers with varying bandgap energies.

When new structures are implemented, each layer of the cell must be optimized in order for the entire device to function efficiently. The most volatile layer of these devices is …


Projected Costs Of A Grid-Connected Domestic Pv System Under Different Scenarios In Ireland, Using Measured Data From A Trial Installation, Lacour Ayompe, Aidan Duffy, Sarah Mccormack, Michael Conlon Apr 2010

Projected Costs Of A Grid-Connected Domestic Pv System Under Different Scenarios In Ireland, Using Measured Data From A Trial Installation, Lacour Ayompe, Aidan Duffy, Sarah Mccormack, Michael Conlon

Articles

This paper presents results of a study of projected costs for a grid-connected PV system for domestic application in Ireland. The study is based on results from a 1.72kWpPV system installed on a flat rooftop in Dublin, Ireland. During its first year of operation a total of 885.1kWh/kWp of electricity was generated with a performance ratio of 81.5%. The scenarios employed in this study consider: a range of capital costs; cost dynamics based on a PV module learning rate of 2+/-75%; projections for global annual installed PV capacity under an advanced and moderate market growth conditions; domestic electricity cost growth …


Fabrication Of Silicon Photovoltaic Micro-Particles For Low-Cost Solar Energy Generation, Siddhartha Kala Jan 2009

Fabrication Of Silicon Photovoltaic Micro-Particles For Low-Cost Solar Energy Generation, Siddhartha Kala

Electronic Theses and Dissertations

The relatively high cost of the high quality semiconductor materials (typically silicon) and complex conventional techniques for the fabrication of solar cells result in the overall high cost of the commercially available solar cells. Although, research in the field of solar technologies has been going on for a long time, but, utilization of solar energy still remains limited to a very few applications, owing to the high manufacturing costs and lower efficiency. In this work we present a new solar technology based on silicon photovoltaic micro-particles and demonstrate a fabrication technique for such particles. The photovoltaic micro-particles can be manufactured …