Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 35

Full-Text Articles in Engineering

Hybrid Photovoltaic + Battery Energy System Grid-Tied Converter Capstone Review Thesis, Archer Taylor Jun 2023

Hybrid Photovoltaic + Battery Energy System Grid-Tied Converter Capstone Review Thesis, Archer Taylor

University Honors Theses

Hybrid power converters present an opportunity to more efficiently harness energy from renewable sources. This paper reviews an undergraduate senior capstone project with the goal of designing and verifying the benefits of a hybrid converter, combining a photovoltaic array, battery energy system and a DC-AC inverter. The author recounts their experience throughout the 6 month period, detailing the research and design process followed by the prototype testing. Additionally, they reflect on the struggles of the capstone team and how to apply the learnings in the future.


Evaluation Of Single Phase Smart Pv Inverter Functions In Unbalanced Residential Distribution Systems, Darren Symonette Aug 2022

Evaluation Of Single Phase Smart Pv Inverter Functions In Unbalanced Residential Distribution Systems, Darren Symonette

Graduate Theses and Dissertations

In the United States, smart PV inverters integrated with residential distribution systems are becoming a more common occurrence. With integration of smart PV inverters, power utilities are experiencing an increase of number of operations with regards to switched capacitor banks, voltage regulators and on load tap changers. These increases can lead to excess wear and tear on the devices causing power utilities to perform unwanted replacement and maintenance. However, smart PV inverters when controlled under specific functions can enable these inverters to provide reactive power and voltage control which in turn lowers the number of operations for switched capacitor banks, …


Improving The Programmability Of Networked Energy Systems, Noman Bashir Jun 2022

Improving The Programmability Of Networked Energy Systems, Noman Bashir

Doctoral Dissertations

Global warming and climate change have underscored the need for designing sustainable energy systems. Sustainable energy systems, e.g., smart grids, green data centers, differ from the traditional systems in significant ways and present unique challenges to system designers and operators. First, intermittent renewable energy resources power these systems, which break the notion of infinite, reliable, and controllable power supply. Second, these systems come in varying sizes, spanning over large geographical regions. The control of these dispersed and diverse systems raises scalability challenges. Third, the performance modeling and fault detection in sustainable energy systems is still an active research area. Finally, …


Performance Loss Rate And Temperature Modeling In Predictive Energy Yield Programs For Utility-Scale Solar Power Plants, Katelynn M. Dinius Dec 2021

Performance Loss Rate And Temperature Modeling In Predictive Energy Yield Programs For Utility-Scale Solar Power Plants, Katelynn M. Dinius

Master's Theses

The Gold Tree Solar Farm, designed by REC Solar, has a rated output power of 4.5 MW and began operation in 2018 to provide electricity to Cal Poly’s campus. Gold Tree Solar Farm site terrain consists of rolling hills and uneven slopes. The uneven typography results in interrow shading, requiring a modified tracking control algorithm to maximize power production. Predicting a utility solar field’s lifetime energy yield is a critical step in assessing project feasibility and calculating project revenue. The MATLAB-based predictive power model developed for this field overpredicted power in the middle of the day. The purpose of this …


Solar Pv Emulator, Tristan Studer, Cody Kremer Jun 2021

Solar Pv Emulator, Tristan Studer, Cody Kremer

Electrical Engineering

The implementation of a solar PV emulator. Creating a controllable testing environment which sufficiently recreates realistic conditions a photovoltaic cell would experience in real world use. The project aims to accurately show the efficiency and reliability of a solar PV cell, opposed to an ideal model which creates unrealistic expectations. The PV emulator implements conditions such as: irradiance, soiling and temperate changes. It gives feedback on a displayed IV curve and/or PV curve so the user may graphically analyze the output their PV cell produces given various conditions. It allows the user selectable conditions the solar cell may experience this …


Solar Soiling Mitigation, Claire Desmith Mar 2021

Solar Soiling Mitigation, Claire Desmith

Electrical Engineering

This senior project aims to mitigate performance losses that occur in Photovoltaic (PV) systems due to soiling of the panels. Soiling is the natural occurrence of debris accumulation on panels, depending on local climate conditions. Soiling loss refers to efficiency lost due to dirt and dust accumulation on the panels. The debris reduces system output by shading on a smaller scale. In addition to uniform soiling, corner soiling is observed in framed modules as debris collects in the corners of the modules. While solutions currently exist to clean modules to mitigate soiling losses, these solutions are often expensive and time …


Energy And Economic Losses Due To Soiling On Utility Scale Pv Systems To Guide Timing Of Cost Effective Cleaning, Sophia Mcmillin Stockburger, Vicente Jesus Rios Jun 2020

Energy And Economic Losses Due To Soiling On Utility Scale Pv Systems To Guide Timing Of Cost Effective Cleaning, Sophia Mcmillin Stockburger, Vicente Jesus Rios

Electrical Engineering

The purpose of this senior project is to develop and recommend a cleaning schedule for Goldtree Solar Farm that is both economically beneficial and an efficient use of cleaning for the client. Solar farms can have various factors that influence the cleaning schedule such as weather behavior, time of the year, soiling, and other factors. Through this senior project, the goal is to assess these factors effect on the solar farm to produce a cleaning schedule that will maximize energy production, maximize profits, and prevent insignificant cleaning

This analysis is motivated by defining and promoting the benefits of regular maintenance …


Neca Ghana Project, Michael T. Klee Mar 2020

Neca Ghana Project, Michael T. Klee

Construction Management

Cal Poly’s motto is, “Learn by Doing" and for Cal Poly’s NECA Chapter, this isn’t simply a motto, but a directive for proactive change. For my senior project I will be leading the Cal Poly NECA chapter in the design, pre- fabrication and construction of a 5-7kw solar array, community center, ice production room and technology room in the remote fishing village of Agbokpa, Ghana. The solar array will power multiple industrial DC freezers, high efficiency LED lighting and charging stations while additionally powering water filtration and irrigation systems. Like many other fishing villages around the world, Agbokpa has no …


Triple-Junction Solar Cells : In Parallel., Levi C Mays Aug 2019

Triple-Junction Solar Cells : In Parallel., Levi C Mays

Electronic Theses and Dissertations

This paper looks into the current inefficiency of solar cells and attempts a few alternative solar cell structures in order to provide a more effective source of renewable energy. Currently, multi-junction solar cells are being developed to capture the sun’s light more efficiently. One of the ideas in this paper is to add a window to see if the addition of such a layer into a junction will increase the voltage while maintaining nearly the same current output. Central to this paper is the rearranging of the conducting layers of the multi-junction cell so that the junctions can be connected …


Pv Hybrid Inverter And Bess, Jacob Sussex, William Dresser, Owen Mckenzie, Jonathan Wharton, Derek Seaman Jun 2019

Pv Hybrid Inverter And Bess, Jacob Sussex, William Dresser, Owen Mckenzie, Jonathan Wharton, Derek Seaman

Electrical Engineering

The storage of energy from renewable sources such as photovoltaic based systems is a growing market, with 36 MWh of storage installed in Q1 of 2018. A report from EnergySage earlier this year states that in 2017, 74% of residential solar owners were also interested in energy storage systems. Mainstream systems like Tesla’s Powerwall are competing with other lithium-ion based storage systems from a wide number of providers on the market today. Short term and long term data collection on a system like this could be useful in designing future systems which perform better than the current market offerings. This …


Design And Analysis Of A Non-Isolated High Gain Step-Up Cuk Converter, Yasser Almalaq Jan 2019

Design And Analysis Of A Non-Isolated High Gain Step-Up Cuk Converter, Yasser Almalaq

Electronic Theses and Dissertations

Renewable energy sources, such as solar energy, are desired for both economic and ecological issues. These renewable energy sources are plentiful in nature and have a terrific capability for power generation. The only drawback of solar energy, which is one of the best forms of energy sources, is that the output has a low voltage and needs to be stepped up in order to be inserted into the DC grid or an inverter for AC applications. To overcome this drawback, a high gain DC-DC power converter is required in this kind of system. These power converters are needed for a …


Application Of Silicon Nanohair Textured P-N Junctions In A Photovoltaic Device, Michael Small Dec 2018

Application Of Silicon Nanohair Textured P-N Junctions In A Photovoltaic Device, Michael Small

Electronic Theses and Dissertations

The goal of this project is to design and develop a fabrication process for a silicon photovoltaic device which incorporates a nanohair textured p-n junction. The silicon nanowires are etched into a silicon wafer, comprising an epitaxial p-layer on n-substrate, via metal-assisted chemical etching (MACE). The resulting nanowires contain p-n junctions that lie along the length of the vertical nanowires. This construct has the potential to increase the optical bandwidth of a silicon photovoltaic device by allowing a greater amount of short wavelength light to reach the junction. In addition, the MACE method of nanofabrication has the potential for decreasing …


Transformerless High-Power Medium-Voltage Multi-Module Pv Converters, Hasan Bayat Jul 2018

Transformerless High-Power Medium-Voltage Multi-Module Pv Converters, Hasan Bayat

Electronic Thesis and Dissertation Repository

This thesis is focused on the modular multilevel converter (MMC) for Photovoltaic (PV) applications. It is an attempt to address the issues associated with the modeling, control, and power mismatch elimination of the MMC-based PV systems. Firstly, a new real power reference generation scheme is proposed that creates a linear relationship between the real power reference of the system and the dc link voltage of the submodules. Further, a new power mismatch elimination strategy is proposed for the MMC-based PV system which ensures balanced currents are delivered to the host grid regardless of leg and arm power mismatches. The thesis …


The Analysis And Study Of Power System Designs For Same Polytechnic College In Tanzania, Kevin Lum Hua Jun 2018

The Analysis And Study Of Power System Designs For Same Polytechnic College In Tanzania, Kevin Lum Hua

Master's Theses

The Mbesese Initiative for Sustainable Development (MISD) is a group aiming to help eliminate extreme poverty in Africa by creating educational opportunity. One project that the group is currently doing is to build Same Polytechnic College (SPC) in Tanzania. As part of the project, this thesis aims to study and analyze the electrical power system and distribution for the college. Based on the projected load profile of the college and high potential for solar generation in Tanzania, several different power systems utilizing local utility AC electricity and/or photovoltaic (PV) DC electricity are explored and simulated for their feasibility and performance. …


Design & Evaluation Of A Hybrid Switched Capacitor Circuit With Wide-Bandgap Devices For Dc Grid Applications, Joshua L. Stewart Jul 2017

Design & Evaluation Of A Hybrid Switched Capacitor Circuit With Wide-Bandgap Devices For Dc Grid Applications, Joshua L. Stewart

Electrical and Computer Engineering ETDs

ABSTRACT

As technologies advance, the rate at which renewable power sources, such as solar photovoltaic (PV) and wind, are being added to the power grid is increasing. Typically, PV power plants require large inverters for direct current to alternating current (DC-AC) power conversion, as well as large transformers to step up voltages to the grid voltage. Offshore wind farms and large PV power plants in remote locations often aggregate power on a DC bus in order to improve efficiency and reduce the cost of power conversion hardware within the energy complex. However, the power must still be converted to AC …


Structure Stability And Optical Response Of Lead Halide Hybrid Perovskite Photovoltaic Materials: A First-Principles Simulation Study, Siddharth Narendrakumar Rathod Jan 2017

Structure Stability And Optical Response Of Lead Halide Hybrid Perovskite Photovoltaic Materials: A First-Principles Simulation Study, Siddharth Narendrakumar Rathod

Browse all Theses and Dissertations

A third-generation of solar cell is based on organic-inorganic hybrid perovskite materials. These have reached up to 22.1% conversion efficiency through exponential growth just within the last decade, compared to much longer improvement times for other photovoltaic technologies. Lead halide perovskites are among the most commonly used materials in this context. Despite the relatively large number of available works on some of these materials, in particular CH3NH3PbI3, others are less investigated. Here, we focused on CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3 for assessing structure stability and optical response. Using quantum-mechanics-based first principles approaches, we calculated the optimized structures of these three materials …


Configuration And Electronic Properties Of The Interface Between Lead Iodide Hybrid Perovskite And Self-Assembled Monolayers In Solar Cells, Parin Divya Amlani Jan 2017

Configuration And Electronic Properties Of The Interface Between Lead Iodide Hybrid Perovskite And Self-Assembled Monolayers In Solar Cells, Parin Divya Amlani

Browse all Theses and Dissertations

Hybrid perovskite photovoltaic materials are currently the most promising functional materials for solar cell applications with efficiency reaching to those of more conventional materials such as silicon. Using self-assembled monolayers between photovoltaic materials and electrodes is a method for improving the stability and functionality. Recent experiments have shown that using 4-mercaptobenzoic acid and pentafluorobenzenethiol monolayers bridging lead iodide hybrid perovskite photovoltaic materials and electrodes result in improved stability and efficiency. The details of monolayer assembly, molecular adsorption configuration, and resulting modification of electronic properties are important characteristics related to solar cell performance. These characteristics can be obtained through accurate computer …


Photovoltaic Cooking In The Developing World, Tyler Watkins, Christopher O'Day, Omar Arriaga Dec 2016

Photovoltaic Cooking In The Developing World, Tyler Watkins, Christopher O'Day, Omar Arriaga

Mechanical Engineering

The challenge of clean cooking is faced by hundreds of millions of people worldwide. We present a cooking technology consisting of a solar panel directly connected to an electric heater in a well-insulated chamber. Assuming continued decrease in solar panel prices, we anticipate that in a few decades Solar Electric Cooking technologies will be the most common cooking technology for the poor. Appropriate use of insulation reduces the power demand making low-power Insulated Solar Electric Cooking systems already cost competitive.


Simulation, Measurement, And Emulation Of Photovoltaic Modules Using High Frequency And High Power Density Power Electronic Circuits, Yunas Erkaya Jul 2016

Simulation, Measurement, And Emulation Of Photovoltaic Modules Using High Frequency And High Power Density Power Electronic Circuits, Yunas Erkaya

Electrical & Computer Engineering Theses & Dissertations

The number of solar photovoltaic (PV) installations is growing exponentially, and to improve the energy yield and the efficiency of PV systems, it is necessary to have correct methods for simulation, measurement, and emulation. PV systems can be simulated using PV models for different configurations and technologies of PV modules. Additionally, different environmental conditions of solar irradiance, temperature, and partial shading can be incorporated in the model to accurately simulate PV systems for any given condition.

The electrical measurement of PV systems both prior to and after making electrical connections is important for attaining high efficiency and reliability. Measuring PV …


Minimizing Sheet Resistance Of Organic Photovoltaic Cell Top Contact Electrode Layer: Silver Nanowire Concentration Vs. Conductive Polymer Doping Concentration, Caitlyn Cook Jun 2015

Minimizing Sheet Resistance Of Organic Photovoltaic Cell Top Contact Electrode Layer: Silver Nanowire Concentration Vs. Conductive Polymer Doping Concentration, Caitlyn Cook

Materials Engineering

The top contact electrode layers of nine organic photovoltaic cells were prepared with two varying factors: three Silver nanowire (AgNW) densities deposited on a conductive polymer doped with three concentrations. Silver’s low sheet resistance of 20-Ω/sq is hypothesized to lower the sheet resistance of the anode layer and thus enhance the overall efficiency of the cell. Four-point probe measurements indicated that increasing AgNW density in the top contact electrode layer of an organic photovoltaic cell significantly reduces sheet resistance from 52.2k-Ω/sq to 18.0 Ω/sq. Although an increase in doping concentration of the conductive polymer reduced sheet resistance in low AgNW …


Control System Design, Analysis, And Simulation Of A Photovoltaic Inverter For Unbalanced Load Compensation In A Microgrid, Elizabeth K. Tomaszewski May 2015

Control System Design, Analysis, And Simulation Of A Photovoltaic Inverter For Unbalanced Load Compensation In A Microgrid, Elizabeth K. Tomaszewski

Electronic Thesis and Dissertation Repository

This thesis presents a control scheme for a single-stage three-phase Photovoltaic (PV) converter with negative sequence load current compensation.

In this thesis a dual virtual impedance active damping technique for an LCL filter is proposed to address the issue of LCL filter resonance. Both inverter-side current and the capacitor current are used in the feedback loop. Using both signals provides higher DC rejection than using capacitor current alone. The proposed active damping scheme results in a faster transient response and higher damping ratio than can be obtained using inverter-side current alone. The feedback gains can be calculated to achieve a …


A Computational Study Of A Photovoltaic Compound Parabolic Concentrator, William M. Vance Jan 2015

A Computational Study Of A Photovoltaic Compound Parabolic Concentrator, William M. Vance

Browse all Theses and Dissertations

Routines have been written and added to the Wright State developed solar system simulation program called Solar_PVHFC to model incident solar radiation for a compound parabolic concentrator (CPC) that uses solar panels (photovoltaic panels) to produce electrical energy. Solar_PVHFC is a program that models a solar energy system composed of solar panels to produce electricity from the sun, hydrogen storage tanks to chemically store the energy produced by the solar panels, and fuel cells to convert between electrical and chemical energy when required. Solar_PVHFC features several adjustable parameters to model a solar panel, hydrogen storage, and fuel cell system. Now …


Life Cycle Assessment Projection Of Photovoltaic Cells: A Case Study On Energy Demand Of Quantum Wire Based Photovoltaic Technology Research, Shilpi Mukherjee Dec 2014

Life Cycle Assessment Projection Of Photovoltaic Cells: A Case Study On Energy Demand Of Quantum Wire Based Photovoltaic Technology Research, Shilpi Mukherjee

Graduate Theses and Dissertations

With increasing clean-energy demand, photovoltaic (PV) technologies have gained attention as potential long-term alternative to fossil fuel energy. However, PV research and manufacture still utilize fossil fuel-powered grid electricity. With continuous enhancement of solar conversion efficiency, it is imperative to assess whether overall life cycle efficiency is also being enhanced. Many new-material PV technologies are still in their research phase, and life cycle analyses of these technologies have not yet been performed. For best results, grid dependency must be minimized for PV research, and this can be accomplished by an analytical instrument called Life Cycle Assessment (LCA).

LCA is the …


Cascaded Inverters For Grid-Connected Photovoltaic Systems, Bailu Xiao May 2014

Cascaded Inverters For Grid-Connected Photovoltaic Systems, Bailu Xiao

Doctoral Dissertations

With the extraordinary market growth in grid-connected PV systems, there is increasing interests in grid-connected PV inverters. Focus has been placed on cheap, high-efficiency, and innovative inverter solutions, leading to a high diversity within the inverters and new system configurations. This dissertation chooses cascaded multilevel inverter topologies for grid-connected PV systems to reduce the cost and improve the efficiency.

First, a single-phase cascaded H-bridge multilevel PV inverter is discussed. To maximize the solar energy extraction of each PV string, an individual maximum power point tracking (MPPT) control scheme is applied, which allows independent control of each dc-link voltage. A generalized …


Off Grid Solar Powered Street Light, Justin Fang, Billy Pham Jun 2013

Off Grid Solar Powered Street Light, Justin Fang, Billy Pham

Electrical Engineering

Street lights are fixtures found in every city and serve the important purpose of illuminating the streets and keeping the roads safe for pedestrians and drivers. Current street lights are powered by the grid, power which is paid for by the taxpayers and could have been used to power homes instead. With this project, our goal is to design and implement an electric power system that collects and stores solar energy, and delivers power to an LED smart street light. The resulting system would reduce street light energy costs by 100% since they would not draw any power from the …


Impact Of Photovoltaic System Penetration On The Operation Of Voltage Regulator Equipment, Abesh Sorab Mubaraki Jun 2013

Impact Of Photovoltaic System Penetration On The Operation Of Voltage Regulator Equipment, Abesh Sorab Mubaraki

Master's Theses

The growing popularity of photovoltaic (PV) generation systems leads to an increase in the number of residential and commercial grid-tied PV systems that interconnect to the distribution circuit. This affects the characteristics of the distribution circuit; for example, the assumption that the voltage profile of a radial line decreases down-stream becomes invalid because of the addition of the PV system on the line. This poses new challenges when setting the parameters of voltage regulating devices. Add to that the fact that PV systems are intermittent, especially on cloudy days, which make the line even more difficult to regulate, and the …


Copper Indium Diselenide Nanowire Arrays In Alumina Membranes Deposited On Molybdenum And Other Back Contact Substrates, Bhavananda R. Nadimpally Jan 2013

Copper Indium Diselenide Nanowire Arrays In Alumina Membranes Deposited On Molybdenum And Other Back Contact Substrates, Bhavananda R. Nadimpally

Theses and Dissertations--Electrical and Computer Engineering

Heterojunctions of CuInSe2 (CIS) nanowires with cadmium sulfide (CdS) were fabricated demonstrating for the first time, vertically aligned nanowires of CIS in the conventional Mo/CIS/CdS stack. These devices were studied for their material and electrical characteristics to provide a better understanding of the transport phenomena governing the operation of heterojunctions involving CIS nanowires. Removal of several key bottlenecks was crucial in achieving this. For example, it was found that to fabricate alumina membranes on molybdenum substrates, a thin interlayer of tungsten had to be inserted. A qualitative model was proposed to explain the difficulty in fabricating anodized aluminum oxide …


Residential Grid-Tied With Battery Backup Photovoltaic System, Thomas Stobuagh Dec 2012

Residential Grid-Tied With Battery Backup Photovoltaic System, Thomas Stobuagh

Electrical Engineering

When power outages occur, many homes are left without power for some time as they are dependent on the power grid. This project aims to design a residential grid tied battery backup photovoltaic system that will provide up to 7.2kW in an area that gets 5.36-5.49 kWh/m2/day [1] to support a home with an average daily usage of 28.4 kWh/day. To effectively use this system the house remains connected to the electric utility at all times, so any power needed above what the solar system can produce is simply drawn from the utility. It includes battery backup or uninterruptible power …


Multipolymer Interactions In Bulk Heterojunction Photovoltaic Devices, Grant Olson Jun 2012

Multipolymer Interactions In Bulk Heterojunction Photovoltaic Devices, Grant Olson

Physics

Multipolymer photovoltaics, single layer devices made up of multiple photoactive polymers, can create organic photovoltaics (OPVs) with a wider spectral response than single polymer systems without the difficult fabrication of a tandem. Our group has successfully created multipolymer solar devices with 2% power conversion efficiency. We have analyzed the optical and electrical properties of these devices, and found that it may be possible for polymers to assist each other with charge extraction, though combining polymers disrupts single polymer crystallinity.


Dynamic Modelling Of Single Phase Grid Connected Photovoltaic System, Gopi Krishna Ari May 2012

Dynamic Modelling Of Single Phase Grid Connected Photovoltaic System, Gopi Krishna Ari

UNLV Theses, Dissertations, Professional Papers, and Capstones

Grid-connected photovoltaic (PV) power systems have been sustaining an exponential growth rate during the past decade. This steep growth is driven by a growing concern about climate change, the adoption of an aggressive regional renewable portfolio standard, rebates and tax incentives, and reduction in PV system cost. One of the main technical barriers that can ultimately limit further PV penetration is the fast variations in the PV system's output power induced by cloud transients. Such events are known to cause voltage fluctuations which may lead to excessive operations of voltage regulation equipment and light flickering.

Solar irradiance variability, which can …