Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Power and Energy

PDF

California Polytechnic State University, San Luis Obispo

Boost

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Hybrid Wall Outlet For Ac Or Dc Power Delivery, Garrett Knoller, Kerr Allan, Greg Perini Dec 2023

Hybrid Wall Outlet For Ac Or Dc Power Delivery, Garrett Knoller, Kerr Allan, Greg Perini

Electrical Engineering

The goal of this project is to develop hybrid DC and AC wall outlets for an efficient, flexible power interface. A DC plug standard is also proposed to allow DC devices to be safely powered by the outlet with the correct DC voltage for each device. The primary objective is to create a power outlet compatible with the proposed DC plug as well as NEMA 5-15 AC plugs, enabling the same outlet to power both types of load as needed. The outlet is intended for buildings and systems transitioning to an isolated DC grid to encourage DC development and adoption. …


Dc-Dc Buck Boost Converter Using The Lt8390 Controller And Gan High Electron Mobility Transistors, Juan Manuel Urbano Jr, Brian Thongchai Keokot Jun 2021

Dc-Dc Buck Boost Converter Using The Lt8390 Controller And Gan High Electron Mobility Transistors, Juan Manuel Urbano Jr, Brian Thongchai Keokot

Electrical Engineering

California Polytechnic State University, San Luis Obispo’s ongoing Energy Harvesting from Exercise Machines (EHFEM) project creates a sustainable energy source by converting physical exercise from exercise machines into renewable electricity. Implementing energy harvesting technology into the Recreation Center’s exercise machines helps Cal Poly make progress on its goal of carbon neutrality by 2050 [1]. An improvement to the system with new technology increases Cal Poly Recreation Center’s ability to save money and improve sustainability.

The focus of this project improves the design of Nicholas Serres, who used the LT8390 controller in his buck boost DC-DC converter [2]. This project improves …


Efficiency Optimization Of Miso Converter, Gabriel Leonides, Christopher S. Peters, Lauren N. Rotsios Jun 2020

Efficiency Optimization Of Miso Converter, Gabriel Leonides, Christopher S. Peters, Lauren N. Rotsios

Electrical Engineering

In recent years, there has been a rapidly growing need for sustainable energy sources. This need comes from the increasing threat of climate change, significant population growth, as well as the effort to bring electricity to rural and underdeveloped areas across the world. The DC House project at Cal Poly aims to address these issues. The Multiple Input Single Output (MISO) converter is an integral part of the DC House project. The MISO converter is a system that connects multiple power sources to a DC bus. This allows the DC House to be powered by multiple types of renewable energy …


Dc To Dc Usb-C Charger, Nikki Gmerek, Kenneth Nguyen, Uriel Serna Jun 2019

Dc To Dc Usb-C Charger, Nikki Gmerek, Kenneth Nguyen, Uriel Serna

Electrical Engineering

The DC House USB-C Charger will convert the 48V input from the DC house, found on the Cal Poly campus, to 3 USB-C outputs: 5V, 12V, and 24 volts. The converter will deliver a total of 185 Watts out across all 3 outputs, with an efficiency greater than 82% at full load. The USB-C ports will be used to connect to compatible phones, laptops or any other device for charging/powering purposes. The goal of this project is to develop the most efficient and safe converter to deliver power to multiple outputs using USB-C, for items as small as a cell …


Dc-Dc Buck-Boost Converter For Energy Harvesting From Exercise Equipment, David T. Bolla Jun 2019

Dc-Dc Buck-Boost Converter For Energy Harvesting From Exercise Equipment, David T. Bolla

Electrical Engineering

This senior project helps harvest the excess energy that exercise equipment generates. Sustainable energy acts as the main target for this project, and it attempts this through reusing the energy created when exercising on elliptical machines. An elliptical machine outputs voltages between approximately 5V and 60V, and a micro-inverter requires an input voltage of about 36V. This DC-DC converter takes the variable output voltage of an elliptical machine and brings it to approximately 36V. Re-purposing the excess energy an elliptical user creates for the grid provides a sustainable alternative to dissipating the energy as heat. This project, along with other …


The Modified-Multiphase Boost Converter: Combined Inductors And Capacitors Topology, Zachary L. Eldredge Jun 2018

The Modified-Multiphase Boost Converter: Combined Inductors And Capacitors Topology, Zachary L. Eldredge

Master's Theses

In this work, a modified boost converter design has been implemented in a multiphase configuration with a condensed topology. The modified aspect of the design has already been proven to drastically reduce input current ripple by about 40% in a single-phase implementation. By placing two modified boost converters in parallel with interleaving main switches (multiphase), the input inductors and modified capacitors of the modified topology can be reduced to just one of each, lowering the number of components, size, and cost. Additionally, multiphase DC/DC converters lower input/output voltage and current ripples while delivering more power compared to single-phase converters. By …


A Modified Multiphase Boost Converter With Reduced Input Current Ripple: Split Inductance And Capacitance Configuration, Zoe M. Hay Jun 2018

A Modified Multiphase Boost Converter With Reduced Input Current Ripple: Split Inductance And Capacitance Configuration, Zoe M. Hay

Master's Theses

This thesis presents the simulation, design, and hardware implementation of a modified multiphase boost converter. Converter design must consider noise imposed on input and output nodes which connect to and influence the operation of other devices. Excessive noise introduces EMI which can damage sensitive circuits or impede their operation. High ripple current degrades battery lifetime and reduces operating efficiency in connected systems such as PV arrays. Converters with high ripple current also experience greater peak conduction loss and require larger components. A two-phase implementation of a modified boost converter demonstrates the input current filtering benefits of the modified topology with …


A Modified Boost Converter With Reduced Input Current Ripple, Nathan H. Lentz Jun 2017

A Modified Boost Converter With Reduced Input Current Ripple, Nathan H. Lentz

Master's Theses

Battery-powered trends in consumer electronics, transportation, and renewable energy sectors increase demands on DC/DC converter technology. Higher switching frequency and efficiency reduces solution size and cost, while increasing power capabilities. Still, switching noise remains the primary drawback associated with any DC/DC converter. Reducing a converter’s input ripple helps prevent switching noise from spreading to other systems on a shared DC power bus. This thesis covers the analysis, simulation, and implementation of a recently-proposed boost converter topology, alongside an equivalent standard boost converter, operating in steady-state, continuous conduction mode. A Matlab-based simulation predicts each converter’s input ripple performance using a state-space …


Rf Power Harvesting Rectenna, Jimmy Tang, Raymond Phu, Tom Geranios, Benjamin Muñoz Jun 2016

Rf Power Harvesting Rectenna, Jimmy Tang, Raymond Phu, Tom Geranios, Benjamin Muñoz

Electrical Engineering

Sustainability is one of today's primary engineering objectives. This principle involves system design that minimizes environmentally harmful energy emissions and resource consumption, and maximizes renewable energy practices [1]. Communication antennas transmit wireless signals that can be converted into usable energy. The Rectenna system described in this report, shown in Figure 1, was designed to accomplish this energy conversion, with -5dBm (316µW) minimum power at the rectifier input. Since typical ambient signal power is in the -70dBm (0.1nW) range, the proposed system could only convert passive, relatively high-power microwave band AC signals to DC. The Rectenna system was designed for 1.9GHz …


Off Grid Solar Powered Street Light, Justin Fang, Billy Pham Jun 2013

Off Grid Solar Powered Street Light, Justin Fang, Billy Pham

Electrical Engineering

Street lights are fixtures found in every city and serve the important purpose of illuminating the streets and keeping the roads safe for pedestrians and drivers. Current street lights are powered by the grid, power which is paid for by the taxpayers and could have been used to power homes instead. With this project, our goal is to design and implement an electric power system that collects and stores solar energy, and delivers power to an LED smart street light. The resulting system would reduce street light energy costs by 100% since they would not draw any power from the …