Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials

2024

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 40

Full-Text Articles in Engineering

3d-Printable Open Source Hardware Developed For Sustainable Technology, Dawei Liu Aug 2024

3d-Printable Open Source Hardware Developed For Sustainable Technology, Dawei Liu

Electronic Thesis and Dissertation Repository

As open-source technology and additive manufacturing evolve, their advantages become increasingly evident, offering solutions to global challenges. This thesis presents the development of two open-source 3D-printable hardware tools to accelerate this trend: a melt flow index (MFI) tool and tourniquet tester. The MFI tool is introduced as a low-cost method for measuring the MFI of thermal-sensitive material, particularly assessing their suitability for recycling thermoplastics for 3D printing. The tourniquet tester provides a low-cost instrument for measuring the pressure of tourniquets to assess efficacy. This device offers a cost-effective solution to ensure the safety and functionality of these critical emergency tools …


Development And Structural Origin Of Stretchable Semiconducting Polymers And Composites, Yunfei Wang Aug 2024

Development And Structural Origin Of Stretchable Semiconducting Polymers And Composites, Yunfei Wang

Dissertations

Stretchable semiconductors are pivotal in advancing wearable and implantable electronics, with those boasting both high stretchability and self-healing capabilities being especially significant for a myriad of wearable applications. In this dissertation, we developed an extremely soft, highly stretchable, and self-healing elastomer based on H-bonding crosslinked amide-functionalized polyisobutylene (PIB-amide). When blended with a high-performance conjugated diketopyrrolopyrrole (DPP-T) polymer, the composite exhibits unprecedented stretchability, exceptionally low elastic modulus, and an innate ability to self-heal at room temperature.

The morphology of conjugated polymer/elastomer semiconducting composites have significant impacts on electrical and mechanical properties Further investigations focused on manipulating the phase separation size in …


Fused Filament Fabrication Of Ceramic Matrix Composite Preforms Via Thermo-Oxidative Stabilization Of Polyetheretherketone, Samuel Pankratz Aug 2024

Fused Filament Fabrication Of Ceramic Matrix Composite Preforms Via Thermo-Oxidative Stabilization Of Polyetheretherketone, Samuel Pankratz

Masters Theses

Carbon-fiber-reinforced ceramic matrix composites (CMCs) are frequently used in applications where high thermo-mechanical loads are induced along with weight limitations. The first step of producing the fibrous preform allows the near-net shape of the final part to be formed with fibers placed in the desired orientation, typically relying on traditional polymer matrix composite (PMC) manufacturing methods. Recent work has demonstrated a new method to produce discontinuous fiber preforms through various forms of additive manufacturing including fused filament fabrication (FFF). This work uses Polyetheretherketone with carbon fibers (CF PEEK) for additive manufacturing of the carbon-rich polymer precursor. Critically, thermoplastic precursor materials …


Physics-Informed Machine Learning Methods For Inverse Design Of Multi-Phase Materials With Targeted Mechanical Properties, Yunpeng Wu Aug 2024

Physics-Informed Machine Learning Methods For Inverse Design Of Multi-Phase Materials With Targeted Mechanical Properties, Yunpeng Wu

All Dissertations

Advances in machine learning algorithms and applications have significantly enhanced engineering inverse design capabilities. This work focuses on the machine learning-based inverse design of material microstructures with targeted linear and nonlinear mechanical properties. It involves developing and applying predictive and generative physics-informed neural networks for both 2D and 3D multiphase materials.

The first investigation aims to develop a machine learning method for the inverse design of 2D multiphase materials, particularly porous materials. We first develop machine learning methods to understand the implicit relationship between a material's microstructure and its mechanical behavior. Specifically, we use ResNet-based models to predict the elastic …


Fabrication And Characterization Of Lignin–Pva Hydrogels With Tunable Network Structures, Keturah Bethel Aug 2024

Fabrication And Characterization Of Lignin–Pva Hydrogels With Tunable Network Structures, Keturah Bethel

All Dissertations

The ability to directly tune the crosslinked network structure of hydrogels is crucial for their functional applications in various fields, such as water filtration, protein separation, and tissue engineering. By controlling the crosslink density of the hydrogel, one can directly alter the mesh size – i.e., the end-to-end distance between crosslink junctions – and, subsequently, directly alter the hydrogel performance. This work discusses the fabrication and characterization of soft composites containing the biopolymer, lignin, are discussed. Precisely, physically-crosslinked composite lignin–Poly(vinyl alcohol) (PVA) hydrogels were fabricated via the freeze-thaw (F/T) pathway, whereby solutions containing specified amounts of PVA and lignin were …


Process-Property-Structure Relationships In Advanced Rare Earth Magnet Manufacturing: Towards Enhanced Performance And Developing Application, Kaustubh Vidyadhar Mungale Aug 2024

Process-Property-Structure Relationships In Advanced Rare Earth Magnet Manufacturing: Towards Enhanced Performance And Developing Application, Kaustubh Vidyadhar Mungale

Doctoral Dissertations

This research aims to study advanced rare earth magnet manufacturing, focusing on the structure-process-property relationships that govern their performance and applications. Rare earth minerals are classified as critical materials because they are essential in manufacturing products across numerous cutting-edge technologies including electric vehicles, renewable energy systems, and high-performance electronics.

Bonded magnets are composites with permanent magnet powder embedded in a polymer matrix. Finely powdered (3-300 microns) rare earth based intermetallics such as neodymium iron boron (NdFeB) and samarium iron nitride (SmFeN) are blended with engineering polymers such as epoxy, polyamides (PA6/PA12) and polyphenylene sulfide (PPS), followed by molding the compound …


Exploring The Synthesis Of Biobased And Chemically Recyclable Polysulfone Using Imine Chemistry, Vitasta Jain Aug 2024

Exploring The Synthesis Of Biobased And Chemically Recyclable Polysulfone Using Imine Chemistry, Vitasta Jain

All Dissertations

Plastic waste poses a major problem because of the chemical stability of these materials, leading to their accumulation in the environment and the leaching of toxic chemicals during their slow decomposition. Additionally, the use of depleting petroleum reserves for synthesis has made for an unsustainable production and risks due to use of chemicals hazardous to the environment and the individuals exposed to it.

To address these concerns, researchers have explored biobased feedstock and incorporating chemical recycling capabilities for a closed loop, sustainable process. One promising feedstock is lignin with its abundant functional groups that can be modified and utilized to …


Synthesis, Crystal Structure, Hirshfeld Surface And Void Analysis Of 2-Amino-1h-Benzimidazolium 2-Hydroxybenzoate, Salmon M. Mukhammadiev, Daminbek A. Ziyatov, Zuhra Ch. Kadirova, Jamshid M. Ashurov, Shahlo Sh. Daminova Jul 2024

Synthesis, Crystal Structure, Hirshfeld Surface And Void Analysis Of 2-Amino-1h-Benzimidazolium 2-Hydroxybenzoate, Salmon M. Mukhammadiev, Daminbek A. Ziyatov, Zuhra Ch. Kadirova, Jamshid M. Ashurov, Shahlo Sh. Daminova

CHEMISTRY AND CHEMICAL ENGINEERING

The purpose of this work is determination of crystal structure and Hirschfeld surface void analysis for many intermolecular interactions in the crystal structure of 1,3-dihydro-2H-benzimidazole-2-iminium-2-hydroxy-5-sulfobenzoate.. For the first time, a new organic salt containing organic benzimidazolium cations and sulfosalicylic anions was synthesized and structurally characterized. Hirshfeld surface analysis confirm that in the crystal shape most remarkable contacts are H∙∙∙O (38%) and H∙∙∙H (29.7%) There are some π–π stacking interactions in the crystal shape.


Synthesis Of Cationite Based On Indene, A Secondary Product Of Hydrocarbons Pyrolysis, Saidmansur Sh. Saidobbozov, Suvonkul E. Nurmanov, Dilorom H. Mirkhamitova Jul 2024

Synthesis Of Cationite Based On Indene, A Secondary Product Of Hydrocarbons Pyrolysis, Saidmansur Sh. Saidobbozov, Suvonkul E. Nurmanov, Dilorom H. Mirkhamitova

CHEMISTRY AND CHEMICAL ENGINEERING

The purpose of the study is extraction of the indene from pyrolysis oil obtained from the pyrolysis of hydrocarbons at the Ustyurt gas processing plant. Indene is isolated by rectification from the composition of pyrolysis oil formed as a by-product of the process of hydrocarbons pyrolysis at the Ustyurt gas processing plant. Polymethyleneindenesulfocationite was synthesized on the basis of isolated indene, and its structure and physicochemical properties were determined. Chromatomass spectrum of pyrolysis oil was obtained and analyzed. The indene fraction and the synthesized polymethyleneindenesulfocationite were analyzed using IR spectroscopy and SEM (scanning electron microscopy). Thermal analysis of cationite was …


Preparation Of Keratin-Containing Protein Compounds From Chickens Feathers Using Hydrochloric Acid, Dilnozakhon I. Tursunova, Oytura S. Maksumova Jul 2024

Preparation Of Keratin-Containing Protein Compounds From Chickens Feathers Using Hydrochloric Acid, Dilnozakhon I. Tursunova, Oytura S. Maksumova

CHEMISTRY AND CHEMICAL ENGINEERING

The purpose of this work is the preparation of keratin-containing protein compounds from poultry processing waste by hydrolysis with hydrochloric acid, including treatment of the protein with 5% H2O2. The process of cleaning feather raw materials using water, liquid soap, NaClO3, C2H5OH, and H2O2, and the reaction of its hydrolysis with an aqueous solution of HCl have been studied. The influence of temperature and reaction duration on the hydrolysis process was studied, and its optimal mode was established. It has been shown that the process of …


Optimizing The Expression Of Polyethylene Terephtalate Hydrolase-Encoding Synthetic Gene In Escherichia Coli Arctic Express (De3), Jocelyn Nataniel, Maria Ulfah, Dini Achnafani, Niknik Nurhayati, Gabriela Christy Sabbathini, Sri Rezeki Wulandari, Abinawanto Abinawanto, Is Helianti Jun 2024

Optimizing The Expression Of Polyethylene Terephtalate Hydrolase-Encoding Synthetic Gene In Escherichia Coli Arctic Express (De3), Jocelyn Nataniel, Maria Ulfah, Dini Achnafani, Niknik Nurhayati, Gabriela Christy Sabbathini, Sri Rezeki Wulandari, Abinawanto Abinawanto, Is Helianti

Makara Journal of Science

The waste of polyethylene terephthalate (PET) plastic waste in Indonesia is a pressing concern due to its slow degradation and potential environmental damage. One promising solution is to utilize polyethylene terephthalate hydrolase from Ideonella sakaiensis (IsPETase), an enzyme that specifically degrades PET. However, inducing the expression of IsPETase synthetic gene in Escherichia coli BL21 (DE3) has been challenging because much of it remains insoluble. This study aimed to express IsPETase in E. coli Arctic Express (DE3) and optimize the conditions to enhance its production. First, pET22b(+)pelB-IsPETase was inserted into E. coli Arctic Express (DE3). The …


Predicting Rheology Of Uv-Curable Nanoparticle Ink Components And Compositions For Inkjet Additive Manufacturing, Cameron D. Lutz Jun 2024

Predicting Rheology Of Uv-Curable Nanoparticle Ink Components And Compositions For Inkjet Additive Manufacturing, Cameron D. Lutz

Master's Theses

Inkjet additive manufacturing is the next step toward ubiquitous manufacturing by enabling multi-material printing that can exhibit various mechanical, electronic, and thermal properties. These characteristics are realized in the careful formulation of the inks and their functional materials, but there are many constraints that need to be satisfied to allow optimal jetting performance and build quality when used in an inkjet 3-D printer. Previous research has addressed the desirable rheology characteristics to enable stable drop formation and how the metallic nanoparticles affect the viscosity of inks. The contending goals of increasing nanoparticle-loading to improve material deposition rates while trying to …


Discovery Of Nanostructured Material Properties For Advanced Polymeric Systems, Colton Lee Duprey May 2024

Discovery Of Nanostructured Material Properties For Advanced Polymeric Systems, Colton Lee Duprey

Electronic Theses and Dissertations

Polymer science has become a well-studied field in recent years. Their tunability, functionalization, and unique intermolecular reactions make them a significant area of interest for materials science. The production and research of polymeric materials has increased ever since their invention, and does look to be slowing down currently. While polymers may be considered macromolecules, their properties can be heavily influenced by the incorporation of nanostructures. Despite their small dimensions, nanostructured materials can have substantial impacts on these systems, even at small loading percentages. Nanomaterials have also become a topic of increasingly large interest in research over the last few decades. …


Spray Drying Of Cellulose Nanofibrils And Cellulose Nanocrystals: Applications In Thermoplastic Nanocomposites And 3d Printing, Sungjun Hwang May 2024

Spray Drying Of Cellulose Nanofibrils And Cellulose Nanocrystals: Applications In Thermoplastic Nanocomposites And 3d Printing, Sungjun Hwang

Electronic Theses and Dissertations

Cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) are promising alternatives to inorganic fillers in polymer matrix composites (PMCs) attributable to their biodegradability and nanometer-sized fibrils. The drying process is crucial for their incorporation into PMCs, which affects final production cost and performance. The University of Maine has researched spray drying (SD) for CNCs and CNFs, finding that SD is a cost-effective method and enhances the mechanical properties of the thermoplastic matrix attributable to the excellent distribution and dispersion of small particles into plastic matrices. The primary objective of this dissertation is to enhance the viability of spray-dried CNC/CNF powders. Three …


Characterization Of Platinum On Carbon Nanoparticles Selectively Coated With Titanium Nitride (Tin), Matthew Maramo May 2024

Characterization Of Platinum On Carbon Nanoparticles Selectively Coated With Titanium Nitride (Tin), Matthew Maramo

Honors Scholar Theses

Proton exchange membrane fuel cells are a promising low-carbon technology that still face problems including low durability during their normal operation cycles. At the cathode, the carbon supports of the catalysts may corrode. Atomic layer deposition of titanium nitride is performed on prepared catalyst layer samples. The purpose of the deposition is to create a thin film over the carbon supports to reduce carbon support corrosion and improve the lifespan of the fuel cell. Sheet resistances and contact angles are measured for the samples before and after the deposition, although some samples did not receive the deposition and post-deposition characterization …


A Comprehensive Investigation Of The Influence Of Geometric Structure On The Shape Memory Performance Of Nafion, Jade Thomas May 2024

A Comprehensive Investigation Of The Influence Of Geometric Structure On The Shape Memory Performance Of Nafion, Jade Thomas

Mechanical Engineering Undergraduate Honors Theses

While perfluorosulfonic acid (PFSA) membranes have primarily been used in fuel cells due to their chemical, thermal, and mechanical stability, one PFSA, Nafion, boasts two unique characteristics: a broad glass transition (~55 °C to 130 °C) and a temperature-persistent electrostatic network. The combination of these two characteristics endows Nafion with exceptional shape memory properties – the ability of a material to morph and transform into pre-programmed shapes when exposed to an external stimulus – with enhanced permanent shape memorization, and a potentially near-infinite number of temporary shape memorization. This study focused on expanding the base of knowledge surrounding Nafion’s shape …


Release Of Small Molecules From Rubber: Effects Of Materials Properties, Mechanical Loading And Molecular Interactions, Yongcan Du May 2024

Release Of Small Molecules From Rubber: Effects Of Materials Properties, Mechanical Loading And Molecular Interactions, Yongcan Du

All Dissertations

Release of small molecules from polymeric materials has wide applications in the delivery systems of active molecules such as drug, fragrance, and semiochemical. Rubber materials are good candidates for the excipients of those systems due to properties such as good flexibility, permeability, and biocompatibility. Factors like material properties, mechanical loading, and molecular interactions may affect the release of small molecules in those systems. Therefore, understanding how those factors affect the release is key to the formulation, design, and evaluation of those systems.

To study the effects of materials properties, vulcanized natural rubber sheets with different crosslink densities, loaded with small …


Design And Develop Lignin Based Recyclable Copolymers For Hydrophobic Coatings, Di Xie May 2024

Design And Develop Lignin Based Recyclable Copolymers For Hydrophobic Coatings, Di Xie

Doctoral Dissertations

Due to the abundance, renewability, biodegradability, overall hydrophobicity, good compatibility with cellulose, and anti-UV/oxidant abilities, lignin has great application potentials in hydrophobic coatings on cellulose-based substrates. However, lignin's structural heterogeneity and rigidity challenge its value-added utilization. Herein, Kraft lignin (KL), from paper mills, is fractionated into more homogeneous fractions (FL), nanosized into lignin micro-nanospheres (LMNS), chemically modified and copolymerized with other constituents to fabricate hydrophobic coating materials with improved coating performances.

To investigate structure-property relationships of lignin-based copolymers, solvent fractionation is conducted to obtain FLs with different molecular weight (MW) and hydroxyl (OH) contents to prepare copolymers by integrating with …


A Comprehensive Investigation Of The Influence Of Geometric Structure On The Shape Memory Performance Of Nafion, Jade Thomas May 2024

A Comprehensive Investigation Of The Influence Of Geometric Structure On The Shape Memory Performance Of Nafion, Jade Thomas

Physics Undergraduate Honors Theses

While perfluorosulfonic acid (PFSA) membranes have primarily been used in fuel cells due to their chemical, thermal, and mechanical stability, one PFSA, Nafion, boasts two unique characteristics: a broad glass transition (~55 °C to 130 °C) and a temperature-persistent electrostatic network. The combination of these two characteristics endows Nafion with exceptional shape memory properties – the ability of a material to morph and transform into pre-programmed shapes when exposed to an external stimulus – with enhanced permanent shape memorization, and a potentially near-infinite number of temporary shape memorization. This study focused on expanding the base of knowledge surrounding Nafion’s shape …


Numerical Calculation Of The Flame Spreading Over A Methane Hydrate Surface, Otabek Nigmatov, Oksana Ismailova Apr 2024

Numerical Calculation Of The Flame Spreading Over A Methane Hydrate Surface, Otabek Nigmatov, Oksana Ismailova

CHEMISTRY AND CHEMICAL ENGINEERING

The Methane Hydrate is expected as an energy source and is being as a medium distance transport means of natural gas alternative of LNG (Liquefied Natural Gas). During the natural gas transportation, fire accidents are concerned. In the present study, the flame spreading over a methane hydrate surface has been studied numerically as a function of hydrate surface temperature, Ts. When Ts = 173 K (-100℃), lower than the dissociation temperature (Td = 183 K (-90℃)), the flame spreading speed is around 6.5 mm/s, while the flame spreading speed at Ts = 193 K (-80℃), …


Dft Study Of Quantum Chemical Parameters Of 4-Amino-2-Mercaptobenzimidazole And Their Tautomeric Forms, Dilnoza Rahmonova, Alisher Eshimbetov, Lobar Gapurova, Zuhra Ch. Kadirova, Shakhnoza Kadirova Apr 2024

Dft Study Of Quantum Chemical Parameters Of 4-Amino-2-Mercaptobenzimidazole And Their Tautomeric Forms, Dilnoza Rahmonova, Alisher Eshimbetov, Lobar Gapurova, Zuhra Ch. Kadirova, Shakhnoza Kadirova

CHEMISTRY AND CHEMICAL ENGINEERING

Coordination competing donor centers, electronic and geometric structures of the 4-amino-2-mercaptobenzimidazole ligand molecule were studied using quantum chemical calculation by the DFT / 6-31G method (d, p). It was shown that during the formation of the metal complex, the ligand is coordinated through the localized nitrogen atom of the imidazole ring. In this study, the total energies (Etot) of 4-amino-2-mercaptobenzimidazole (1) and its tautomeric forms (2 and 3) were calculated. And also, the energies of boundary molecular orbitals, the energy gap between boundary MOs (ΔE) and the distribution of the total charge on atoms and boundary orbitals were determined. In …


The Effect Of Hydrogen Peroxide And Potassium Amylxanthate On The Surface Properties Of Chalcocite And Enargite, Berdakh T. Daniyarov, Hajime Miki, Daminbek A. Ziyatov, Shahlo Daminova Apr 2024

The Effect Of Hydrogen Peroxide And Potassium Amylxanthate On The Surface Properties Of Chalcocite And Enargite, Berdakh T. Daniyarov, Hajime Miki, Daminbek A. Ziyatov, Shahlo Daminova

CHEMISTRY AND CHEMICAL ENGINEERING

The effect on the surface properties and floatability of chalcocite and enargite after oxidative treatment with hydrogen peroxide (H2O2) in the presence and absence of potassium amylxanthate (PAX) as a collector was studied. In this research, flotation tests were carried out on mixed and individual minerals. Oxidative treatment with hydrogen peroxide had a negative effect on the floatability of chalcocite and enargite. PAX adsorption analysis shows that enargite adsorbs PAX faster than chalcocite. Moreover, Fourier transform infrared spectroscopy analysis shows that PAX was adsorbed in the form of copper amylxanthate on chalcocite and enargite surfaces. In …


Influence Of The Amount Of Monoethanolamine On The Physicochemical Properties Of Aminolysis Products, Soxibjon A. Egamberdiyev, Muzaffar G. Alimukhamedov, Juraev Asror, Ravshan Adilov Apr 2024

Influence Of The Amount Of Monoethanolamine On The Physicochemical Properties Of Aminolysis Products, Soxibjon A. Egamberdiyev, Muzaffar G. Alimukhamedov, Juraev Asror, Ravshan Adilov

CHEMISTRY AND CHEMICAL ENGINEERING

The purpose of this paper is to investigate the process of aminolysis of secondary polyethylene terephthalate with monoethanolamine at low ratio. The effect of the amount of monoethanolamine on the physical and chemical properties of the aminolysis product of secondary polyethylene terephthalate was studied. With an increase of 1-4 moles of monoethanolamine obtained for synthesis (without the presence of a catalyst), it was observed that the number of amines in the aminolysis product increased from 324 to 503 mgKON/g, and the number of hydroxyls increased from 298 to 491 mgKON/g. The structure of the resulting bis(2-hydroxyethylene)terephthalamide was studied using IR …


Surface Treatments' Effects On The Capacitor's Dielectric Performance Under Electro-Thermal Stresses, Haider. M. Umran, Feipeng Wang Apr 2024

Surface Treatments' Effects On The Capacitor's Dielectric Performance Under Electro-Thermal Stresses, Haider. M. Umran, Feipeng Wang

Karbala International Journal of Modern Science

Biaxial-oriented polypropylene (BOPP) films are characterized by unfavorable aging behavior because of their poor susceptibility to high temperatures, humidity, and high electric fields. This makes them unqualified to withstand harsh operating conditions, such as in capacitor applications. This study investigates the impact of annealing BOPP samples at 100 °C for five hours after fluorination at different times (15, 30, and 60 minutes) on their electrical and mechanical performance under electro-thermal stresses. Scanning electron microscope (SEM) images confirm that there is an increase in surface roughness and the formation of a dense layer of fluorine-containing groups monotonically with fluorination time. So, …


Low Impedance, Durable, Self-Adhesive Hydrogel Epidermal Electrodes For Electrophysiology Recording, Naiyan Wu Apr 2024

Low Impedance, Durable, Self-Adhesive Hydrogel Epidermal Electrodes For Electrophysiology Recording, Naiyan Wu

McKelvey School of Engineering Theses & Dissertations

Traditional electrodes used for electrophysiology recording, characterized by their hard, dry, and inanimate nature, are fundamentally mismatched with the soft, moist, and bioactive characteristics of biological tissues, leading to suboptimal skin-electrode interfaces. Hydrogel materials, mirroring the high water content and biocompatibility of biological tissues, emerge as promising candidates for epidermal electronic materials due to their adjustable physicochemical properties. However, challenges such as inadequate electrical conductivity, elevated skin impedance, unreliable adhesion in moist conditions, and performance decline from dehydration have significantly restricted the efficacy and applicability of hydrogel-based electrodes. In this thesis, we report a high-performance hydrogel epidermal electrode patch for …


Assessing Adoption Barriers Of Sustainable Packaging In Egypt, Carol Ramses Morgan Feb 2024

Assessing Adoption Barriers Of Sustainable Packaging In Egypt, Carol Ramses Morgan

Theses and Dissertations

Sustainable packaging has become an essential part of business decisions and corporate directions. With the rise of environmental damages due to improper waste management and unsustainable practices, businesses have a major responsibility to analyze their products’ life cycles and redesign them with sustainability in mind. Applying sustainable packaging could save companies large amounts of resources, therefore cutting costs, while also achieving the legal and social duty as a corporation towards society and the environment. Many developing countries, with specific focus on Egypt, have recently focused on legislative and corporate decisions in order to encourage more sustainable practices. Egypt’s new Waste …


Rational Design Of Peptide-Based Materials Informed By Multiscale Molecular Dynamics Simulations, Dhwanit Rahul Dave Feb 2024

Rational Design Of Peptide-Based Materials Informed By Multiscale Molecular Dynamics Simulations, Dhwanit Rahul Dave

Dissertations, Theses, and Capstone Projects

The challenge of establishing a sustainable and circular economy for materials in medicine and technology necessitates bioinspired design. Nature's intricate machinery, forged through evolution, relies on a finite set of biomolecular building blocks with through-bond and through-space interactions. Repurposing these molecular building blocks requires a seamless integration of computational modeling, design, and experimental validation. The tools and concepts developed in this thesis pioneer new directions in peptide-materials design, grounded in fundamental principles of physical chemistry. We present a synergistic approach that integrates experimental designs and computational methods, specifically molecular dynamics simulations, to gain in-depth molecular insights crucial for advancing the …


Effect Of Admixtures On Rapid Hardening, Self-Consolidating Concrete, Haley Johnson Jan 2024

Effect Of Admixtures On Rapid Hardening, Self-Consolidating Concrete, Haley Johnson

Theses and Dissertations--Civil Engineering

Self-consolidating, rapid-hardening concrete is a sought-after product in the market now, however the effects of admixtures on fresh and hardened concrete rheology are still uncertain. This study aims to create a self-consolidating concrete (SCC) using calcium sulfoaluminate (CSA) cement for its rapid-hardening properties, and tests two set time retarders and two viscosity-modifying admixtures (VMAs) to determine how they affect the properties of concrete. The properties studied in this thesis are workability, viscosity, set times, air content, compressive strength, and freeze-thaw resistance of self-consolidating concrete. It was found that tartaric acid creates a very workable SCC with consistent results regardless of …


Sustainable Materials For Environment − Multifunctional Material Made From Dead Leaves And Nanostructured Materials For Antibiotic Degradation, Siyuan Fang Jan 2024

Sustainable Materials For Environment − Multifunctional Material Made From Dead Leaves And Nanostructured Materials For Antibiotic Degradation, Siyuan Fang

Dissertations, Master's Theses and Master's Reports

As environmental pollution from industrial processes and human activities continues to rise, finding efficient approaches to recycle waste materials and degrade persistent contaminants becomes increasingly critical. Dead leaves, an abundant but underutilized biomass, present an opportunity for creating value-added materials if their biocomponents can be preserved and transformed. Simultaneously, antibiotics such as tetracycline are widely found in water bodies but pose serious ecological and health risks, necessitating effective degradation methods. This dissertation addresses these challenges by leveraging natural and nanostructured materials to develop multifunctional products and advanced photocatalytic processes.

Chapter 3 of this dissertation addresses the challenge of converting waste …


Insights Into The Characterization And Degradation Of Electrospun Polycaprolactone Scaffolds For Tissue Engineering Applications, Caleb B. Wells Jan 2024

Insights Into The Characterization And Degradation Of Electrospun Polycaprolactone Scaffolds For Tissue Engineering Applications, Caleb B. Wells

Theses and Dissertations

Electrospun polymeric biodegradable scaffolds are essential in tissue engineering, particularly for Engineered Tissue Vascular Grafts (ETVGs), which promise advancements in treating coronary artery disease, peripheral arterial disease, congenital cardiovascular defects, and renal disease. These scaffolds present a solution to issues with autologous graft availability and durability. While large-diameter grafts in low-pressure environments have seen success, small-diameter grafts in high-flow scenarios remain challenging. Understanding polymeric scaffold degradation and behavior during incubation, especially under dynamic mechanical loading, is vital for clinical translation of small-caliber ETVGs.

This research focuses on characterizing the mechanical and microstructural properties of electrospun polycaprolactone (PCL) scaffolds and their …