Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials

2012

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 51

Full-Text Articles in Engineering

Silica Nanoparticle-Based Coatings With Superhydrophilic And Superhydrophobic Properties, Robert Andrew Fleming Dec 2012

Silica Nanoparticle-Based Coatings With Superhydrophilic And Superhydrophobic Properties, Robert Andrew Fleming

Graduate Theses and Dissertations

Superhydrophilic and superhydrophobic surfaces have potential for implementation into a variety of fields, including self-cleaning surfaces, anti-fogging transparent materials, and biomedical applications. In this study, sandblasting, oxygen plasma treatments, silica nanoparticle films, and a low surface energy fluorocarbon film were employed to change the natural surface wettability of titanium, glass, and polyethylene terephthalate (PET) substrates, with an aim to produce superhydrophilic and superhydrophobic behavior. The effects of these surface modifications are characterized by water contact angles (WCAs), surface wetting stability, surface morphology and roughness, surface elemental composition, and optical transmittance measurements. The results show that stable superhydrophilic and superhydrophobic surfaces …


Prediction Of Compressive Creep Bhaviour In Flexible Polyurethane Foam Over Long Time Scales And At Elevated Temperatures, Conor Briody, Barry Duignan, Stephen Jerrams, Stephen Ronan Dec 2012

Prediction Of Compressive Creep Bhaviour In Flexible Polyurethane Foam Over Long Time Scales And At Elevated Temperatures, Conor Briody, Barry Duignan, Stephen Jerrams, Stephen Ronan

Articles

Compressive creep gradually affects the structural performance of flexible polymeric foam material over extended time periods. When designing components, it is often difficult to account for long-term creep, as accurate creep data over long time periods or at high temperatures is often unavailable. This is mainly due to the lengthy testing times and/or inadequate high temperature testing facilities. This issue can be resolved by conducting a range of short-term creep tests and applying accurate prediction methods to the results. Short-term creep testing was conducted on viscoelastic polyurethane foam, a material commonly used in seating and bedding systems. Tests were conducted …


Titanium Aluminum Nitride Films Deposited By Ac Reactive Magnetron Sputtering: Study Of Positioning Effect In An Inverted Cylindrical Magentron Sputtering System, George C. Vandross Ii Dec 2012

Titanium Aluminum Nitride Films Deposited By Ac Reactive Magnetron Sputtering: Study Of Positioning Effect In An Inverted Cylindrical Magentron Sputtering System, George C. Vandross Ii

Graduate Theses and Dissertations

TiAlN films were deposited on glass substrates by AC magnetron sputtering at 2 kW with constant Argon and Nitrogen gas flow rates to study the effects of positioning on the deposited films. The deposition system used was an ICM-10 IsoFlux cylindrical magnetron sputtering chamber. The samples were placed in different positions and tilts with respect to the location of the Titanium and Aluminum targets in the chamber. It was found that with change in position and application of tilts, deposited films acquired different physical and chemical properties. It is believed that the differences in these properties were caused by to …


Design, Fabrication, Testing Of Cnt Based Isfet And Characterization Of Nano/Bio Materials Using Afm, Zhuxin Dong Dec 2012

Design, Fabrication, Testing Of Cnt Based Isfet And Characterization Of Nano/Bio Materials Using Afm, Zhuxin Dong

Graduate Theses and Dissertations

A combination of Carbon Nanotubes (CNTs) and Ion Selective Field Effect Transistor (ISFET) is designed and experimentally verified in order to develop the next generation ion concentration sensing system. Micro Electro-Mechanical System (MEMS) fabrication techniques, such as photolithography, diffusion, evaporation, lift-off, packaging, etc., are required in the fabrication of the CNT-ISFET structure on p-type silicon wafers. In addition, Atomic Force Microscopy (AFM) based surface nanomachining is investigated and used for creating nanochannels on silicon surfaces. Since AFM based nanomanipulation and nanomachining is highly controllable, nanochannels are precisely scratched in the area between the source and drain of the FET where …


Pulse Sharpening Effects Of Thin Film Ferroelectric Transmission Lines, Robert J. Sleezer Dec 2012

Pulse Sharpening Effects Of Thin Film Ferroelectric Transmission Lines, Robert J. Sleezer

Graduate Theses and Dissertations

Advances in material science have resulted in the development of electrically nonlinear high dielectric thin film ferroelectrics, which have led to new opportunities for the creation of novel devices. This dissertation investigated one such device: a low voltage nonlinear transmission line (NLTL). A finite element simulation of ferroelectric transmission lines showed that NLTLs are capable of creating shockwaves. Additionally, if the losses are kept sufficiently low, it was shown that voltage gain should be possible. Furthermore, a method of accounting for material dispersion was developed. Results from simulations including material dispersion showed that temporal solitons might be possible from a …


A Silicon Carbide Based Solid-State Fault Current Limiter For Modern Power Distribution Systems, Erik Darnell Johnson Dec 2012

A Silicon Carbide Based Solid-State Fault Current Limiter For Modern Power Distribution Systems, Erik Darnell Johnson

Graduate Theses and Dissertations

The fault current limiter represents a developing technology which will greatly improve the reliability and stability of the power grid. By reducing the magnitude of fault currents in distribution systems, fault current limiters can alleviate much of the damage imposed by these events. Solid-state fault current limiters in particular offer many improved capabilities in comparison to the power system protection equipment which is currently being used for fault current mitigation. The use of silicon carbide power semiconductor devices in solid-state fault current limiters produces a system that would help to advance the infrastructure of the electric grid.

A solid-state fault …


P3ht:Pcpdtbt:Pcbm Multi- Polymer Single Layer Solar Cells, Ted Andreas Nov 2012

P3ht:Pcpdtbt:Pcbm Multi- Polymer Single Layer Solar Cells, Ted Andreas

Physics

OPV efficiencies are limited by their narrow absorption; rather than using tandem architecture to overcome this obstacle, our group combined P3HT and PCPDTBT into a single layer BHJ solar cell that achieved 2.0% PCE. This is 33% higher than the pure P3HT control from this group, proving that multi-polymer solar cells have the potential to outperform their single-polymer components.


Calcium Phosphate-Based Resorbable Biomaterials For Bone Regeneration, Daniel O. Costa Oct 2012

Calcium Phosphate-Based Resorbable Biomaterials For Bone Regeneration, Daniel O. Costa

Electronic Thesis and Dissertation Repository

Bone defects are a prevalent problem in orthopedics and dentistry. Calcium phosphate-based coatings and nanocomposites offer unique solutions towards producing scaffolds with suitable physical, mechanical and biological properties for bone regeneration.

We developed a novel method to synthesize hydroxyapatite (HA) particles with high aspect ratio using sol-gel chemistry and hydrothermal treatment. We obtained tunable pure-phase carbonated-HA in the form of micro/nanorods and nanowires (diameters 25-800 nm). To mimic the structure of bone, HA nanowires were homogenously mixed within poly(ε-caprolactone) (PCL) to produce nanocomposites with improved mechanical properties as determined by uniaxial tensile testing.

Surface chemistry and topography of biomaterials play …


Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena Oct 2012

Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena

Electronic Thesis and Dissertation Repository

In microsurgery, the human hand imposes certain limitations in accurately positioning the tip of a device such as scalpel. Any errors in the motion of the hand make microsurgical procedures difficult and involuntary motions such as hand tremors can make some procedures significantly difficult to perform. This is particularly true in the case of vitreoretinal microsurgery. The most familiar source of involuntary motion is physiological tremor. Real-time compensation of tremor is, therefore, necessary to assist surgeons to precisely position and manipulate the tool-tip to accurately perform a microsurgery. In this thesis, a novel handheld device (AID) is described for compensation …


Biaxial Bending And Lateral-Torsional Instability Of Imperfect Frp I-Beams Including Effects Of Retrofitting, Jodi Marie Knorowski Oct 2012

Biaxial Bending And Lateral-Torsional Instability Of Imperfect Frp I-Beams Including Effects Of Retrofitting, Jodi Marie Knorowski

Civil & Environmental Engineering Theses & Dissertations

This thesis presents the outcome of a theoretical and experimental study of the behavior of Fiber Reinforced Polymer (FRP) I-beams susceptible to lateral-torsional instability or when subjected to biaxial bending. Laboratory experiments involved application of vertical and horizontal static loads to a 4 x 4 x ¼ in. I-beam with various lengths, and the resulting displacement, twist, and strain were recorded. In the vertical direction, the beam was loaded from different reference load heights with respect to the shear center of the beam. The governing biaxial flexure and torsion differential equations were modified to account for the presence of initial …


Hydrogel-Based Nanocomposites And Laser-Assisted Surface Modification For Biomedical Application, Pei Yin Sep 2012

Hydrogel-Based Nanocomposites And Laser-Assisted Surface Modification For Biomedical Application, Pei Yin

Electronic Thesis and Dissertation Repository

Hydrogels can be used in contact lens, wound dressing, drug delivery and tissue scaffolds due to their good biocompatibility. However, the poor mechanical properties and non-specific protein adsorption of hydrogels limit their applications. The adverse effects of protein adsorption in hydrogels include biofouling, inflammation, or even body rejection. In this project, two different hydrogel materials, co-polymer 2-hydroxyethyl methacrylate with a low amount of 2-aminoethyl methacrylate, p(HEMA-co-AEMA) and silicone hydrogel were fabricated by photo-polymerization; the former has hydrophilic surface and the latter is hydrophobic. The silica (SiO2) nanoparticle-loaded hydrogels have been developed by using in situ polymerization. The dispersion …


Dynamics And Kinetics Of Model Biological Systems, Stephen William Mirigian Sep 2012

Dynamics And Kinetics Of Model Biological Systems, Stephen William Mirigian

Open Access Dissertations

In this work we study three systems of biological interest: the translocation of a heterogeneously charged polymer through an infinitely thin pore, the wrapped of a rigid particle by a soft vesicle and the modification of the dynamical properties of a gel due to the presence of rigid inclusions.

We study the kinetics of translocation for a heterogeneously charged polyelectrolyte through an infinitely narrow pore using the Fokker-Planck formalism to compute mean first passage times, the probability of successful translocation, and the mean successful translocation time for a diblock copolymer. We find, in contrast to the homopolymer result, that details …


Magnetic, Optical And Dielectric Effects On Photovoltaic Processes In Organic Solar Cells, Huidong Zang Aug 2012

Magnetic, Optical And Dielectric Effects On Photovoltaic Processes In Organic Solar Cells, Huidong Zang

Doctoral Dissertations

Organic bulk heterojunction photovoltaics have attracted extensive attention during the past decade due to the global energy crisis, and it had been nominated as one of the most promising substitution for the next generation of green energy. Organic Photovoltaics, also named as “plastic solar cells”, have many advantages including super-low cost, flexibility, and compatibility with the ink printing fabrication technique, etc. Although the photovoltaic efficiency of the organic bulk heterojunction is still not as high as that of the inorganic ones, its great potential makes it the most promising solar cells in the future. In this dissertation, Chapter 1 presents …


Modulation Of Bone And Nerve Cell Behavior Using Biodegradable Polymer Networks, Lei Cai Aug 2012

Modulation Of Bone And Nerve Cell Behavior Using Biodegradable Polymer Networks, Lei Cai

Doctoral Dissertations

This dissertation presents novel biodegradable and photo-crosslinkable building blocks to achieve polymer networks with controlled surface chemistry, stiffness, and topographical features for investigating cell-material interactions and targeting hard and soft tissue engineering applications. Chapter I reviews the recent progress in polymeric gel systems and how their physical properties can be tailored to regulate cell functions and satisfy the clinical needs. Chapter II presents a facile method to synthesize photo-crosslinkable poly(epsilon-caprolactone) acrylates (PCLAs) and reveal tunable cell responses to photo-crosslinked PCLAs. Chapter III investigates the mechanism of colorization in preparing crosslinkable polymers by reacting hydroxyl-containing polymers with unsaturated anhydrides or acyl …


Polymer Mediated Therapeutic Delivery For Neural Interface Applications, Yu Cao Aug 2012

Polymer Mediated Therapeutic Delivery For Neural Interface Applications, Yu Cao

Doctoral Dissertations

The technology of interfacing neurons with machines through implantable neural electrodes has significant implications. Although there have been studies implanting such electrodes in human to help patients with motor disorders, longevity of these implants remains an unresolved issue. One of the key factors influencing longevity has been adverse tissue response toward the implanted electrodes

The objective of this research is to engineer a comprehensive solution that can manage the response at the cellular level while preserving the electrode functions. Given the complexity of the host response, we hypothesize that a multi-pronged approach would better improve the longevity of the electrodes. …


Atomistic Simulations Of Defect Nucleation And Intralayer Fracture In Molybdenum Disulphide During Nanoindentation, James A. Stewart Aug 2012

Atomistic Simulations Of Defect Nucleation And Intralayer Fracture In Molybdenum Disulphide During Nanoindentation, James A. Stewart

Graduate Theses and Dissertations

Molybdenum disulphide (MoS2) is a layered, hexagonal crystal that has a very low coefficient of friction. Due to this low coefficient of friction, MoS2 has become a well-known solid lubricant and liquid lubricant additive. As such, nanoparticles of MoS2 have been proposed as an additive to traditional liquid lubricants to provide frictional properties that are sensitive to different temperature and pressure regimes. However, to properly design these MoS2 nanoparticles to be sensitive to different temperature and pressure regimes, it is necessary to understand the mechanical response of crystalline MoS2 under mechanical loading. Specifically, the fundamental mechanism associated with the nucleation …


Fabrication And Characterization Of Biocomposites From Polylactic Acid And Bamboo Fibers, Sarah E. Royse Aug 2012

Fabrication And Characterization Of Biocomposites From Polylactic Acid And Bamboo Fibers, Sarah E. Royse

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Environmental concerns have been motivating research in the field of biodegradable materials, especially those from biological sources. Polylactic acid (PLA) is one biopolymer with the potential to replace some standard synthetic polymers. PLA is currently used for fibers, medical sutures, and some packaging, but is still used very little compared with synthetic polymers. One thing that can be done to expand the potential applications of PLA is to add fibers to create composite materials. Bamboo is a good choice for these fibers because it is abundant in many parts of the world, grows very quickly, and is widely unused. Composites …


Pretreatment And Pyrolysis Of Rayon-Based Precursor For Carbon Fibers, Kokouvi Akato Aug 2012

Pretreatment And Pyrolysis Of Rayon-Based Precursor For Carbon Fibers, Kokouvi Akato

Masters Theses

In this work, two rayon fibers were investigated as carbon fiber precursors. A detailed consideration has been applied to a domestically produced cellulose fiber to carbon fiber (CF) transition. This transition of precursor to carbon fiber can be subdivided into two stages: pyrolysis (thermal decomposition) of cellulose in air and high temperature treatment in an inert atmosphere. The specific objectives were to investigate the stabilization stage of the produced rayon with respect to changes taking place during thermal decomposition, and to evaluate the effects on the properties of the carbonized fiber. Changes taking place during the conversion process of the …


Semiconductor Nanocrystals: From Quantum Dots To Quantum Disks, Zheng Li Aug 2012

Semiconductor Nanocrystals: From Quantum Dots To Quantum Disks, Zheng Li

Graduate Theses and Dissertations

The bottom-up colloidal synthesis opened up the possibility of finely tuning and tailoring the semiconductor nanocrystals. Numerous recipes were developed for the preparation of colloidal semiconductor nanocrystals, especially the traditional quantum dots. However, due to the lack of thorough understanding to those systems, the synthesis chemistry is still on the empirical level. CdS quantum dots synthesis in non-coordinating solvent were taken as a model system to investigate its molecular mechanism and formation process, ODE was identified as the reducing agent for the preparation of CdS nanocrystals, non-injection and low-temperature synthesis methods developed. In this model system, we not only proved …


Bond Strength Characterization Of Su-8 To Su-8 For Fabricating Microchannels Of An Electrokinetic Microfluidic Pump, Nash Anderson Jun 2012

Bond Strength Characterization Of Su-8 To Su-8 For Fabricating Microchannels Of An Electrokinetic Microfluidic Pump, Nash Anderson

Materials Engineering

Photosensitive negative resist polymer layers of SU-8 2050 were adhered to 100 mm n-type silicon and Pyrex wafers via spin coating. These wafers were then bonded together at various temperatures of 100 ͦC, 120 ͦC, 140 ͦC, 150 ͦC, 160 ͦC, and 180 ͦC. The target thickness of each SU-8 layer was 100 µm. Photolithography was used to create microfluidic channels within the SU-8. An n-type silicon wafer and a Pyrex wafer, each with an SU-8 layer, were brought together on the “hard bake” or final step of SU-8 polymerization. A pressure of ~300 KPa was applied during the hard …


Biaxial & Twist Testing Of Composite Carbon-Fiber Sandwich Panels For Automotive Racing Vehicles, Erik Eckberg Jun 2012

Biaxial & Twist Testing Of Composite Carbon-Fiber Sandwich Panels For Automotive Racing Vehicles, Erik Eckberg

Materials Engineering

Composite sandwich panels were constructed with 4-ply plain weave carbon-fiber/epoxy face sheets in the 0o/45o/0o/45o orientation and 1/8th inch Nomex honeycomb core. The panels were cut into 5-inch square test plates for mechanical testing. All testing was done on a fixture designed and fabricated by Pratt & Miller Engineering and installed on an Instron testing system at Cal Poly. The twist test was performed by supporting diagonal corners of the plate while simultaneously loading the opposite two corners at a crosshead rate of .06 in/min (ASTM 3044-94R11). Out of 10 panels tested, …


Artificial Alveolar-Capillary Membrane On A Microchip, Keith Male Jun 2012

Artificial Alveolar-Capillary Membrane On A Microchip, Keith Male

Materials Engineering

A microfluidic device was synthesized out of polydimethyl siloxane (PDMS) to simulate the structure of the alveolar-capillary interface of the human lung. Soft lithography techniques were used to build a mold structure out of SU-8 epoxy at heights ranging from 30µm to 110 µm on a silicon substrate, with the 70 µm structure working the best. A mixture of 10:1 Sylgard 184 elastomer was then cast using the mold, and cured at a temperature of 80oC. For the porous membrane, the PDMS was spun on at 6000rpm for 30 seconds using a spin coater to produce a membrane …


Wireless Temperature Monitoring System For The Cal Poly Pilot Winery, Caitlin Devaney Jun 2012

Wireless Temperature Monitoring System For The Cal Poly Pilot Winery, Caitlin Devaney

Materials Engineering

This project, with an interdisciplinary group of two computer engineers and one materials engineer, was seeking to implement an automated temperature monitoring system which is affordable and easy to use, as well as adaptable to any arrangement and scale of a winemaker’s fermentation setup. My goal, as the materials engineer, was to design, fabricate, and test the enclosure, for the wireless nodes that are placed in the wine fermentation tanks, and the materials used for the node enclosure. For the enclosure of the system, materials selection was completed using CES software using limitations of only polymer materials which absorb less …


Effects Of Abrasive Particles On The Projected Fatigue Life Of Nylon Climbing Rope, Casey Johnson, Charlie Klonowski Jun 2012

Effects Of Abrasive Particles On The Projected Fatigue Life Of Nylon Climbing Rope, Casey Johnson, Charlie Klonowski

Materials Engineering

When climbing rope is used outdoors, it is exposed to foreign particles such as sand and silt. These particles can potentially work their way through a rope’s sheath and damage the load bearing core decreasing the rope’s strength without exhibiting obvious wear. This project quantified the effect of abrasive particles on the fatigue life of nylon climbing rope. The experimental design involved 18 pieces of static nylon rope of kernmantle construction. 9 of these samples were heavy agitated in a slurry of water, silt, sand and soil, and left to sit for 24 hours. The remaining 9 samples were submerged …


Blunt Impact Performance Evaluation Of Helmet Lining Systems For Military And Recreational Use, Jaclyn Siniora, Ryan Taylor, Darren Suey Jun 2012

Blunt Impact Performance Evaluation Of Helmet Lining Systems For Military And Recreational Use, Jaclyn Siniora, Ryan Taylor, Darren Suey

Industrial Technology and Packaging

With the increasing problem in collegiate athletes experiencing injuries to the brain, different helmet liners where put to the test to see which liner provided athletes the greatest protection under specific conditions.

This senior project evaluates five different liners in football helmets. Each of the helmet liners were tested at three different temperatures: hot, cold, and ambient. Each helmet had seven different impact locations which were put to the test. The project was designed to be used to test ACH military combat liners as well. Due to shipping bottle necks the ACH combat liners have been left to future Cal …


Multipolymer Interactions In Bulk Heterojunction Photovoltaic Devices, Grant Olson Jun 2012

Multipolymer Interactions In Bulk Heterojunction Photovoltaic Devices, Grant Olson

Physics

Multipolymer photovoltaics, single layer devices made up of multiple photoactive polymers, can create organic photovoltaics (OPVs) with a wider spectral response than single polymer systems without the difficult fabrication of a tandem. Our group has successfully created multipolymer solar devices with 2% power conversion efficiency. We have analyzed the optical and electrical properties of these devices, and found that it may be possible for polymers to assist each other with charge extraction, though combining polymers disrupts single polymer crystallinity.


Active Response Of Polymer Materials From External Stimuli – Solvents And Light; Grafting Reactions On Perovskite Layers, Jianxia Zhang May 2012

Active Response Of Polymer Materials From External Stimuli – Solvents And Light; Grafting Reactions On Perovskite Layers, Jianxia Zhang

University of New Orleans Theses and Dissertations

The active response of a series of polymeric materials was investigated. Both solvent activated and light activated thin films and wire systems show dynamic behaviors when exposed to different stimuli.

Solvent mediated fluxional behavior of polymer thin films involved extensive, rapid curling both on infusion and evaporation of good solvents. These films can be either lab-fabricated ones or commercial ones, and the curling behavior can be as fast as seconds. Conditions including polymer materials, chosen solvents, and film geometry can affect the behavior.

Methods that allowed for the creation and retention of distorted wire structures were also developed; the asymmetric …


Advanced Design Optimization For Composite Structure: Stress Reduction, Weight Decrease And Manufacturing Cost Savings, Shayan Ahmadian May 2012

Advanced Design Optimization For Composite Structure: Stress Reduction, Weight Decrease And Manufacturing Cost Savings, Shayan Ahmadian

Master's Theses

An injection moldable chopped fiber composite actuator with detailed drawing and tolerances was designed within one year. A vendor was selected and a quote for injection molding tooling cost for production was obtained and the first prototype was built in addition of six months. The risks are identified and material characterization tests are proposed.

The objective of this project was redesigning an aluminum made actuator with a continuous fiber composite for weight saving purposes. After searching the literature and consulting with experts in the field it was concluded that manufacturing costs associated with continuous fiber composite are 3 times as …


Nanocharacterization Of Porous Materials With Atomic Force Microscopy, Yasemin Kutes May 2012

Nanocharacterization Of Porous Materials With Atomic Force Microscopy, Yasemin Kutes

Master's Theses

Scanning Probe Microscopy techniques have proven very useful in the investigation of porous nanostructured surfaces. Especially, Atomic Force Microscopy (AFM) has been widely used due to its compatibility with non-conducting surfaces. In particular, AFM often complements other techniques like scanning and transmission electron microscopy by providing quantitative surface information coupled with nanoscale spatial resolution. Its ability to operate in fluid is also important, as this allows researchers to mimic the physiological environment of biological materials and systems. In this work, two main types of porous materials are studied with AFM, including Phosphoric Acid Fuel Cell (PAFC) electrode catalyst layers, and …


Tuning The Properties Of Metal-Ligand Complexes To Modify The Properties Of Supramolecular Materials, Ian Henderson May 2012

Tuning The Properties Of Metal-Ligand Complexes To Modify The Properties Of Supramolecular Materials, Ian Henderson

Open Access Dissertations

Supramolecular chemistry is the study of discreet molecules assembled into more complex structures though non-covalent interactions such as host-guest effects, pi-pi stacking, electrostatic effects, hydrogen bonding, and metal-ligand interactions. Using these interactions, complex hierarchical assembles can be created from relatively simple precursors.

Of the supramolecular interactions listed above, metal-ligand interactions are of particular interest due to the wide possible properties which they present. Factors such as the denticity, polarizability, steric hindrance, ligand structure, and the metal used (among others) contribute to a dramatic range in the physical properties of the metal-ligand complexes. Particularly affected by these factors are the kinetic …