Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Reflection And Transmission Of Electromagnetic Pulses At A Planar Dielectric Interface: Theory And Quantum Lattice Simulations, Abhay K. Ram, George Vahala, Linda Vahala, Min Soe Jan 2021

Reflection And Transmission Of Electromagnetic Pulses At A Planar Dielectric Interface: Theory And Quantum Lattice Simulations, Abhay K. Ram, George Vahala, Linda Vahala, Min Soe

Electrical & Computer Engineering Faculty Publications

There is considerable interest in the application of quantum information science to advance computations in plasma physics. A particular point of curiosity is whether it is possible to take advantage of quantum computers to speed up numerical simulations relative to conventional computers. Many of the topics in fusion plasma physics are classical in nature. In order to implement them on quantum computers, it will require couching a classical problem in the language of quantum mechanics. Electromagnetic waves are routinely used in fusion experiments to heat a plasma or to generate currents in the plasma. The propagation of electromagnetic waves is …


Transient Behavior Of Drift And Ionization In Atmospheric Pressure Nitrogen Discharge, S. K. Dhali Jan 2021

Transient Behavior Of Drift And Ionization In Atmospheric Pressure Nitrogen Discharge, S. K. Dhali

Electrical & Computer Engineering Faculty Publications

The fluid models are frequently used to describe a non-thermal plasma such as a streamer discharge. The required electron transport data and rate coefficients for the fluid model are parametrized using the local field approximation (LFA) in first order models and the local-mean-energy approximation (LMEA) in second order models. We performed Monte Carlo simulations in Nitrogen gas with step changes in the E/N (reduced electric field) to study the behavior of the transport properties in the transient phase. During the transient phase of the simulation, we extract the instantaneous electron mean energy, which is different from the steady state mean …


Design Of A 10 Mev Beamline At The Upgraded Injector Test Facility For E-Beam Irradiation, Xi Li, Helmut Baumgart, Gianluigi Ciovati, F.E. Hannon, S. Wang Jan 2021

Design Of A 10 Mev Beamline At The Upgraded Injector Test Facility For E-Beam Irradiation, Xi Li, Helmut Baumgart, Gianluigi Ciovati, F.E. Hannon, S. Wang

Electrical & Computer Engineering Faculty Publications

Electron beam irradiation near 10 MeV is suitable for wastewater treatment. The Upgraded Injector Test Facility (UITF) at Jefferson Lab is a CW superconducting linear accelerator capable of providing an electron beam of energy up to 10 MeV and up to 100 µA current. This contribution presents the beam transport simulations for a beamline to be used for the irradiation of wastewater samples at the UITF. The simulations were done using the code General Particle Tracer with the goal of obtaining an 8 MeV electron beam of radius (3-σ) of ~2.4 cm. The achieved energy spread is ~74.5 keV. The …


The Resistive Barrier Discharge: A Brief Review Of The Device And Its Biomedical Applications, Mounir Laroussi Jan 2021

The Resistive Barrier Discharge: A Brief Review Of The Device And Its Biomedical Applications, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

This paper reviews the principles behind the design and operation of the resistive barrier discharge, a low temperature plasma source that operates at atmospheric pressure. One of the advantages of this plasma source is that it can be operated using either DC or AC high voltages. Plasma generated by the resistive barrier discharge has been used to efficiently inactivate pathogenic microorganisms and to destroy cancer cells. These biomedical applications of low temperature plasma are of great interest because in recent times bacteria developed increased resistance to antibiotics and because present cancer therapies often are accompanied by serious side effects. Low …


Simulation Studies On The Interactions Of Electron Beam With Wastewater, X. Li, S. Wang, Helmut Baumgart, G. Ciovati, F. Hannon Jan 2021

Simulation Studies On The Interactions Of Electron Beam With Wastewater, X. Li, S. Wang, Helmut Baumgart, G. Ciovati, F. Hannon

Electrical & Computer Engineering Faculty Publications

The manufactured chemical pollutants, like 1,4 dioxane and PFAS (per- and polyfluroralkyl substances), found in the underground water and/or drinking water are challenging to be removed or biodegraded. Energetic electrons are capable of mediating and removing them. This paper utilizes FLUKA code to evaluate the beam-wastewater interaction effects with different energy, space and divergence distributions of the electron beam. With 8 MeV average energy, the electron beam exits from a 0.0127 cm thick titanium window, travels through a 4.3 cm distance air and a second 0.0127 cm thick stainless water container window with 2.43 cm radius, and finally is injected …


High Voltage Design And Evaluation Of Wien Filters For The Cebaf 200 Kev Injector Upgrade, Gabriel Palacios-Serrano, Helmut Baumgart, C. Hernández-García, P. Adderley, J. Benesch, D. Bullard, J. Grames, A. Hofler, D. Machie, M. Poelker, M. Stutzman, R. Suleiman Jan 2021

High Voltage Design And Evaluation Of Wien Filters For The Cebaf 200 Kev Injector Upgrade, Gabriel Palacios-Serrano, Helmut Baumgart, C. Hernández-García, P. Adderley, J. Benesch, D. Bullard, J. Grames, A. Hofler, D. Machie, M. Poelker, M. Stutzman, R. Suleiman

Electrical & Computer Engineering Faculty Publications

High-energy nuclear physics experiments at the Jefferson Lab Continuous Electron Beam Accelerator Facility (CEBAF) require highly spin-polarization electron beams, produced from strained super-lattice GaAs photocathodes, activated to negative electron affinity in a photogun operating at 130 kV dc. A pair of Wien filter spin rotators in the injector defines the orientation of the electron beam polarization at the end station target. An upgrade of the CEBAF injector to better support the upcoming MOLLER experiment requires increasing the electron beam energy to 200 keV, to reduce unwanted helicity correlated intensity and position systematics and provide precise control of the polarization orientation. …