Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Generating Electromagnetic Nonuniformly Correlated Beams, Milo W. Hyde Iv, Xifeng Xiao, David G. Voelz Dec 2019

Generating Electromagnetic Nonuniformly Correlated Beams, Milo W. Hyde Iv, Xifeng Xiao, David G. Voelz

Faculty Publications

We develop a method to generate electromagnetic nonuniformly correlated (ENUC) sources from vector Gaussian Schell-model (GSM) beams. Having spatially varying correlation properties, ENUC sources are more difficult to synthesize than their Schell-model counterparts (which can be generated by filtering circular complex Gaussian random numbers) and, in past work, have only been realized using Cholesky decomposition—a computationally intensive procedure. Here we transform electromagnetic GSM field instances directly into ENUC instances, thereby avoiding computing Cholesky factors resulting in significant savings in time and computing resources. We validate our method by generating (via simulation) an ENUC beam with desired parameters. We find the …


Measurement Of Electron Density And Temperature From Laser-Induced Nitrogen Plasma At Elevated Pressure (1–6 Bar), Ashwin P. Rao [*], Mark Gragston, Anil K. Patnaik, Paul S. Hsu, Michael B. Shattan Nov 2019

Measurement Of Electron Density And Temperature From Laser-Induced Nitrogen Plasma At Elevated Pressure (1–6 Bar), Ashwin P. Rao [*], Mark Gragston, Anil K. Patnaik, Paul S. Hsu, Michael B. Shattan

Faculty Publications

Laser-induced plasmas experience Stark broadening and shifts of spectral lines carrying spectral signatures of plasma properties. In this paper, we report time-resolved Stark broadening measurements of a nitrogen triplet emission line at 1–6 bar ambient pressure in a pure nitrogen cell. Electron densities are calculated using the Stark broadening for different pressure conditions, which are shown to linearly increase with pressure. Additionally, using a Boltzmann fit for the triplet, the electron temperature is calculated and shown to decrease with increasing pressure. The rate of plasma cooling is observed to increase with pressure. The reported Stark broadening based plasma diagnostics in …


Effects Of Pulse Width On He Plasma Jets In Contact With Water Evaluated By Oh(A-X) Emission And Ohaq Production, Shutong Song, Esin B. Sözer, Chunqi Jiang Jun 2019

Effects Of Pulse Width On He Plasma Jets In Contact With Water Evaluated By Oh(A-X) Emission And Ohaq Production, Shutong Song, Esin B. Sözer, Chunqi Jiang

Bioelectrics Publications

Nanosecond pulsed helium plasma jets impinging on water produce hydroxyl radicals both in gas- and liquid-phase. In this study, the effects of pulse width on a repetitively pulsed plasma jet in contact with water are evaluated via OH(A-X) emission and OHaq production in water for various pulse widths ranging from 200 to 5000 ns. The maximal energy efficiency of OH(A-X) emission is obtained for pulse widths of 600-800 ns whereas the maximal efficiency of OHaq production is at 200 ns. Temporally-resolved emission spectroscopy shows that more than 40% of OH(A-X) emission is produced during the first 200 ns …


The Effect Of Tube Geometry On The Chiral Plasma, S. Jin, D. Zou, X. Lu, Mounir Laroussi Jan 2019

The Effect Of Tube Geometry On The Chiral Plasma, S. Jin, D. Zou, X. Lu, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

A chiral plasma plume has recently been reported inside a circular quartz tube without the use of an external magnetic field. It is believed that the quartz tube plays an important role in the formation of the chiral plasma plume. In this paper, to better understand how this interesting structure is generated, the effect of the tube geometry on the chiral plasma is investigated. First, the effect of the thickness of the tube wall on the chiral plasma is investigated. It is interesting to find that a too thin or too thick tube wall is not favorable for generating the …


Carbon Multicharged Ion Generation From Laser-Spark Ion Source, Md. Mahmudur Rahman, Oguzhan Balki, Hani E. Elsayed-Ali Jan 2019

Carbon Multicharged Ion Generation From Laser-Spark Ion Source, Md. Mahmudur Rahman, Oguzhan Balki, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Multicharged carbon ions are generated by using a laser-assisted spark-discharge ion source. A Q-switched Nd:YAG laser pulse (1064 nm, 7 ns, ≤ 4.5 × 109 W/cm2) focused onto the surface of a glassy carbon target results in its ablation. The spark-discharge (∼1.2 J energy, ∼1 µs duration) is initiated along the direction of the plume propagation between the target surface and a grounded mesh that is parallel to the target surface. Ions emitted from the laser-spark plasma are detected by their time-of-flight using a Faraday cup. The ion energy-to-charge ratio is analyzed by a three-mesh retarding field …


Ignition Of A Plasma Discharge Inside An Electrodeless Chamber: Methods And Characteristics, Mounir Laroussi Jan 2019

Ignition Of A Plasma Discharge Inside An Electrodeless Chamber: Methods And Characteristics, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

In this paper the generation and diagnostics of a reduced pressure (300 mTorr to 3 Torr) plasma generated inside an electrodeless containment vessel/chamber are presented. The plasma is ignited by a guided ionization wave emitted by a low temperature pulsed plasma jet. The diagnostics techniques include Intensified Charge Coupled Device (ICCD) imaging, emission spectroscopy, and Langmuir probe. The reduced-pressure discharge parameters measured are the magnitude of the electric field, the plasma electron number density and temperature, and discharge expansion speed.


Compact -300 Kv Dc Inverted Insulator Photogun With Biased Anode And Alkali-Antimonide Photocathode, C. Hernandez-Garcia, P. Adderley, B. Bullard, J. Benesch, J. Grames, J. Gubeli, F. Hannon, J. Hansknecht, J. Jordan, R. Kazimi, G. A. Krafft, M. A. Mamun, M. Poelker, M. L. Stutzman, R. Suleiman, M. Tiefenback, Y. Wang, S. Zhang, H. Baumgart, G. Palacios-Serrano, S. Wijethunga, J. Yoskowitz, C. A. Valerio Lizarraga, R. Montoya Soto, A. Canales Ramos Jan 2019

Compact -300 Kv Dc Inverted Insulator Photogun With Biased Anode And Alkali-Antimonide Photocathode, C. Hernandez-Garcia, P. Adderley, B. Bullard, J. Benesch, J. Grames, J. Gubeli, F. Hannon, J. Hansknecht, J. Jordan, R. Kazimi, G. A. Krafft, M. A. Mamun, M. Poelker, M. L. Stutzman, R. Suleiman, M. Tiefenback, Y. Wang, S. Zhang, H. Baumgart, G. Palacios-Serrano, S. Wijethunga, J. Yoskowitz, C. A. Valerio Lizarraga, R. Montoya Soto, A. Canales Ramos

Electrical & Computer Engineering Faculty Publications

This contribution describes the latest milestones of a multiyear program to build and operate a compact −300  kV dc high voltage photogun with inverted insulator geometry and alkali-antimonide photocathodes. Photocathode thermal emittance measurements and quantum efficiency charge lifetime measurements at average current up to 4.5 mA are presented, as well as an innovative implementation of ion generation and tracking simulations to explain the benefits of a biased anode to repel beam line ions from the anode-cathode gap, to dramatically improve the operating lifetime of the photogun and eliminate the occurrence of micro-arc discharges.