Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 27 of 27

Full-Text Articles in Engineering

Exploring Topological Phonons In Different Length Scales: Microtubules And Acoustic Metamaterials, Ssu-Ying Chen Aug 2023

Exploring Topological Phonons In Different Length Scales: Microtubules And Acoustic Metamaterials, Ssu-Ying Chen

Dissertations

The topological concepts of electronic states have been extended to phononic systems, leading to the prediction of topological phonons in a variety of materials. These phonons play a crucial role in determining material properties such as thermal conductivity, thermoelectricity, superconductivity, and specific heat. The objective of this dissertation is to investigate the role of topological phonons at different length scales.

Firstly, the acoustic resonator properties of tubulin proteins, which form microtubules, will be explored The microtubule has been proposed as an analog of a topological phononic insulator due to its unique properties. One key characteristic of topological materials is the …


Bacterial Motion And Spread In Porous Environments, Yasser Almoteri Aug 2023

Bacterial Motion And Spread In Porous Environments, Yasser Almoteri

Dissertations

Micro-swimmers are ubiquitous in nature from soil and water to mammalian bodies and even many technological processes. Common known examples are microbes such as bacteria, micro-algae and micro-plankton, cells such as spermatozoa and organisms such as nematodes. These swimmers live and have evolved in multiplex environments and complex flows in the presence of other swimmers and types, inert particles and fibers, interfaces and non-trivial confinements and more. Understanding the locomotion and interactions of these individual micro-swimmers in such impure viscous fluids is crucial to understanding the emergent dynamics of such complex systems, and to further enabling us to control and …


Boundary Integral Equation Methods For Superhydrophobic Flow And Integrated Photonics, Kosuke Sugita Aug 2023

Boundary Integral Equation Methods For Superhydrophobic Flow And Integrated Photonics, Kosuke Sugita

Dissertations

This dissertation presents fast integral equation methods (FIEMs) for solving two important problems encountered in practical engineering applications.

The first problem involves the mixed boundary value problem in two-dimensional Stokes flow, which appears commonly in computational fluid mechanics. This problem is particularly relevant to the design of microfluidic devices, especially those involving superhydrophobic (SH) flows over surfaces made of composite solid materials with alternating solid portions, grooves, or air pockets, leading to enhanced slip.

The second problem addresses waveguide devices in two dimensions, governed by the Helmholtz equation with Dirichlet conditions imposed on the boundary. This problem serves as a …


Importance Of Vegetation In Tsunami Mitigation: Evidence From Large Eddy Simulations With Fluid-Structure Interactions, Abhishek Mukherjee May 2023

Importance Of Vegetation In Tsunami Mitigation: Evidence From Large Eddy Simulations With Fluid-Structure Interactions, Abhishek Mukherjee

Dissertations

Communities worldwide are increasingly interested in nature-based solutions like coastal forests for the mitigation of coastal risks. Still, it remains unclear how much protective benefit vegetation provides, particularly in the limit of highly energetic flows after tsunami impact. The present thesis, using a three-dimensional incompressible computational fluid dynamics model with a fluid-structure interaction approach, aims to quantify how energy reflection and dissipation vary with different degrees of rigidity and vegetation density of a coastal forest.

In this study, tree trunks are represented as cylinders, and the elastic modulus of hardwood trees such as pine or oak is used to characterize …


Carrier Transport Engineering In Wide Bandgap Semiconductors For Photonic And Memory Device Applications, Ravi Teja Velpula Dec 2022

Carrier Transport Engineering In Wide Bandgap Semiconductors For Photonic And Memory Device Applications, Ravi Teja Velpula

Dissertations

Wide bandgap (WBG) semiconductors play a crucial role in the current solid-state lighting technology. The AlGaN compound semiconductor is widely used for ultraviolet (UV) light-emitting diodes (LEDs), however, the efficiency of these LEDs is largely in a single-digit percentage range due to several factors. Until recently, AlInN alloy has been relatively unexplored, though it holds potential for light-emitters operating in the visible and UV regions. In this dissertation, the first axial AlInN core-shell nanowire UV LEDs operating in the UV-A and UV-B regions with an internal quantum efficiency (IQE) of 52% are demonstrated. Moreover, the light extraction efficiency of this …


Hydrodynamic Investigation Of The Discharge Of Complex Fluids From Dispensing Bottles Using Experimental And Computational Approaches, Baran Teoman Dec 2022

Hydrodynamic Investigation Of The Discharge Of Complex Fluids From Dispensing Bottles Using Experimental And Computational Approaches, Baran Teoman

Dissertations

The discharge of non-Newtonian, complex fluids through orifices of industrial tanks, pipes, dispensers, or packaging containers is a ubiquitous but often problematic process because of the complex rheology of such fluids and the geometry of the containers. This, in turn, reduces the discharge rate and results in residual fluid left in the container, often referred to as heel. Heel formation is undesired in general, since it causes loss of valuable material, container fouling, and cross-contamination between batches. Heel may be of significant concern not only in industrial vessels but also in consumer packaging. Despite its relevance, the research in this …


Performance Analysis Of The Dominant Mode Rejection Beamformer, Enlong Hu Aug 2022

Performance Analysis Of The Dominant Mode Rejection Beamformer, Enlong Hu

Dissertations

In array signal processing over challenging environments, due to the non-stationarity nature of data, it is difficult to obtain enough number of data snapshots to construct an adaptive beamformer (ABF) for detecting weak signal embedded in strong interferences. One type of adaptive method targeting for such applications is the dominant mode rejection (DMR) method, which uses a reshaped eigen-decomposition of sample covariance matrix (SCM) to define a subspace containing the dominant interferers to be rejected, thereby allowing it to detect weak signal in the presence of strong interferences. The DMR weight vector takes a form similar to the adaptive minimum …


Coupled Oscillators: Protein And Acoustics, Angelique N. Mcfarlane Aug 2022

Coupled Oscillators: Protein And Acoustics, Angelique N. Mcfarlane

Theses

This work encompassed three different vibrational energy transfer studies of coupled resonators (metal, topological, and microtubule comparison) inspired by the lattices of microtubules from regular and cancerous cells. COMSOL Multiphysics 5.4 was utilized to design the experiment. The simulation starts with an acoustic pressure study to examine the vibrational modes present in coupled cylinders, representing α-, β-tubulin heterodimers. The Metal Study consisted of 3 models (monomer, dimer, and trimer) to choose the correct height (40 mm) and mode (Mode 1) for study. The Topological Study was run to predict and understand how the lattice structure changes over a parametric sweep …


Nondestructive Evaluation Of 3d Printed, Extruded, And Natural Polymer Structures Using Terahertz Spectroscopy And Imaging, Alexander T. Clark May 2022

Nondestructive Evaluation Of 3d Printed, Extruded, And Natural Polymer Structures Using Terahertz Spectroscopy And Imaging, Alexander T. Clark

Dissertations

Terahertz (THz) spectroscopy and imaging are considered for the nondestructive evaluation (NDE) of various three-dimensional (3D) printed, extruded, and natural polymer structures. THz radiation is the prime candidate for many NDE challenges due to the added benefits of safety, increased contrast and depth resolution, and optical characteristic visualization when compared to other techniques. THz imaging, using a wide bandwidth pulse-based system, can evaluate the external and internal structure of most nonconductive and nonpolar materials without any permanent effects. NDE images can be created based on THz pulse attributes or a material’s spectroscopic characteristics such as refractive index, attenuation coefficient, or …


Investigation Of Topological Phonons In Acoustic Metamaterials, Wenting Cheng May 2022

Investigation Of Topological Phonons In Acoustic Metamaterials, Wenting Cheng

Dissertations

Topological acoustics is a recent and intense area of research. It merges the knowledge of mathematical topology, condensed matter physics, and acoustics. At the same time, it has been pointed out that quasiperiodicity can greatly enhance the periodic table of topological systems. Because quasiperiodic patterns have an intrinsic global degree of freedom, which exists in the topological space called the hull of a pattern, where the shape traced in this topological space is called the phason. The hull augments the physical space, which opens a door to the physics of the integer quantum Hall effect (IQHE) in arbitrary dimensions. In …


Coherent Control Of Dispersive Waves, Jimmie Adriazola Dec 2021

Coherent Control Of Dispersive Waves, Jimmie Adriazola

Dissertations

This dissertation addresses some of the various issues which can arise when posing and solving optimization problems constrained by dispersive physics. Considered here are four technologically relevant experiments, each having their own unique challenges and physical settings including ultra-cold quantum fluids trapped by an external field, paraxial light propagation through a gradient index of refraction, light propagation in periodic photonic crystals, and surface gravity water waves over shallow and variable seabeds. In each of these settings, the physics can be modeled by dispersive wave equations, and the technological objective is to design the external trapping fields or propagation media such …


Experimental And Computational Studies Of Functionalized Carbon Nanotubes For Use In Energy Storage Devices And Membranes, Emine S. Karaman Dec 2021

Experimental And Computational Studies Of Functionalized Carbon Nanotubes For Use In Energy Storage Devices And Membranes, Emine S. Karaman

Dissertations

Electrolytes with good interfacial stability are a crucial component of any electrochemical device. The development of novel gel polymer electrolytes (GEs) with good interface stability and better manufacturability is important for the development of the next generation electrochemical devices. Gel electrolytes are hybrid electrolyte materials, combining benefits of both liquid and solid systems. Compared with liquid and solid electrolytes, GEs open new design opportunities and do not require rigorous encapsulation methods. In this dissertation, studies on functionalized carbon nanotubes (fCNTs) and graphene oxide (GO) doped polyvinyl alcohol (PVA) based gel electrolytes (GEs) are reported. The ionic conductivity and mechanical strength …


Electric-Field-Driven Processes In Multiphase Fluid Systems, Qian Lei Dec 2021

Electric-Field-Driven Processes In Multiphase Fluid Systems, Qian Lei

Dissertations

Advantages of using electric fields in miniaturized apparatuses for a wide range of applications are revealed by numerous experimental and theoretical studies over the last several decades as it offers a simple and efficient method for manipulation of multiphase fluid systems. This approach is considered to be especially beneficial for control of boiling processes and colloidal suspensions considered in the presented work.

Boiling. Today's trends for enhancing boiling heat transfer in terrestrial and space applications focus on removal of bubbles to prevent formation of a vapor layer over the surface at a high overheat. In contrast, this dissertation presents a …


Colloidal Quantum Dot (Cqd) Based Mid-Wavelength Infrared Optoelectronics, Shihab Bin Hafiz Aug 2021

Colloidal Quantum Dot (Cqd) Based Mid-Wavelength Infrared Optoelectronics, Shihab Bin Hafiz

Dissertations

Colloidal quantum dot (CQD) photodetectors are a rapidly emerging technology with a potential to significantly impact today’s infrared sensing and imaging technologies. To date, CQD photodetector research is primarily focused on lead-chalcogenide semiconductor CQDs which have spectral response fundamentally limited by the bulk bandgap of the constituent material, confining their applications to near-infrared (NIR, 0.7-1.0 um) and short-wavelength infrared (SWIR, 1-2.5 um) spectral regions. The overall goal of this dissertation is to investigate a new generation of CQD materials and devices that advances the current CQD photodetector research toward the technologically important thermal infrared region of 3-5 ?m, known as …


Advances In Modeling Gas Adsorption In Porous Materials For The Characterization Applications, Max A. Maximov Aug 2021

Advances In Modeling Gas Adsorption In Porous Materials For The Characterization Applications, Max A. Maximov

Dissertations

The dissertation studies methods for mesoporous materials characterization using adsorption at various levels of scale and complexity. It starts with the topic introduction, necessary notations and definitions, recognized standards, and a literature review.

Synthesis of novel materials requires tailoring of the characterization methods and their thorough testing. The second chapter presents a nitrogen adsorption characterization study for silica colloidal crystals (synthetic opals). These materials have cage-like pores in the range of tens of nanometers. The adsorption model can be described within a macroscopic approach, based on the Derjaguin-Broekhoff-de Boer (DBdB) theory of capillary condensation. A kernel of theoretical isotherms is …


Analysis Of Container Throughput: Demand Forecast And Seaport Competitiveness Assessment, Hussain Talat Sulaimani Aug 2021

Analysis Of Container Throughput: Demand Forecast And Seaport Competitiveness Assessment, Hussain Talat Sulaimani

Dissertations

Seaports play a crucial role in the container industry, where they act as important nodes in the transport chain to facilitate international trade. In a competitive market, port capacity plays a significant role in defining its competitive position to attract demand and avoid congestion. Failing to provide suitable capacity results in the loss of market share. Therefore, port decision-makers face the challenge of maintaining and developing suitable port facilities to provide efficient services to port users. One of the aspects that decision-makers consider in the planning and development process is analyzing container demand. The analysis of container demand can be …


First-Principles Density Functional Theory Studies On Perovskite Materials, Aneer Lamichhane May 2021

First-Principles Density Functional Theory Studies On Perovskite Materials, Aneer Lamichhane

Dissertations

Perovskites are a family of materials with a diverse combination of different elements. As a consequence, they exhibit numerous functionalities such as pyroelectric, piezoelectric, ferroelectric, and ferromagnetic with applications in photovoltaic cells, LEDs, superconductivity, colossal magneto-resistance, and topological insulators. After 2009, perovskites have gained notoriety as suitable materials for solar cells and alternative candidates to silicon-based conventional solar cells. Generally, oxide perovskites exhibit good dielectric properties, halide perovskites display good photonic qualities, and chalcogenide perovskites are used in applications in solid-state lighting, sensing, and energy harvesting. In this dissertation, various types of perovskites ranging from oxide to halide are investigated …


Investigation Of Topological Phonons In Discrete Mechanical Metamaterials, Kai Qian May 2021

Investigation Of Topological Phonons In Discrete Mechanical Metamaterials, Kai Qian

Dissertations

The study of topological mechanical metamaterials is a new emerging field that focuses on the topological properties of artificial mechanical structures. Inspired by topological insulators, topological mechanism has attracted intensive attention in condensed matter physics and successfully connected the quantum mechanical descriptions of electrons with the classical descriptions of phonons. It has led to experiments of mechanical metamaterials possessing topological characteristics, such as topologically protected conducting edges or surfaces without back-scattering. This dissertation presents a new experimental approach for mechanically engineering topological metamaterials based on patterning magnetically coupled spinners in order to localize the propagation of vibrations and evaluate different …


The Aging And Impacts Of Atmospheric Soot: Closing The Gap Between Experiments And Models, Ogochukwu Yvonne Enekwizu Dec 2020

The Aging And Impacts Of Atmospheric Soot: Closing The Gap Between Experiments And Models, Ogochukwu Yvonne Enekwizu

Dissertations

The main goal of this dissertation is to generate data and parameterizations to accurately represent soot aerosols in atmospheric models. Soot from incomplete combustion of fossil fuels and biomass burning is a major air pollutant and a significant contributor to climate warming. The environmental impacts of soot are strongly dependent on the particle morphology and mixing state, which evolve continuously during atmospheric transport via a process known as aging. To make predictions of soot impacts on the environment, most atmospheric models adopt simplifications of particle structure and mixing state, which lead to substantial uncertainties. Using an experimentally constrained modeling approach, …


Treated Hfo2 Based Rram Devices With Ru, Tan, Tin As Top Electrode For In-Memory Computing Hardware, Yuvraj Dineshkumar Patel Dec 2020

Treated Hfo2 Based Rram Devices With Ru, Tan, Tin As Top Electrode For In-Memory Computing Hardware, Yuvraj Dineshkumar Patel

Theses

The scalability and power efficiency of the conventional CMOS technology is steadily coming to a halt due to increasing problems and challenges in fabrication technology. Many non-volatile memory devices have emerged recently to meet the scaling challenges. Memory devices such as RRAMs or ReRAM (Resistive Random-Access Memory) have proved to be a promising candidate for analog in memory computing applications related to inference and learning in artificial intelligence. A RRAM cell has a MIM (Metal insulator metal) structure that exhibits reversible resistive switching on application of positive or negative voltage. But detailed studies on the power consumption, repeatability and retention …


Countering Internet Packet Classifiers To Improve User Online Privacy, Sina Fathi-Kazerooni Dec 2020

Countering Internet Packet Classifiers To Improve User Online Privacy, Sina Fathi-Kazerooni

Dissertations

Internet traffic classification or packet classification is the act of classifying packets using the extracted statistical data from the transmitted packets on a computer network. Internet traffic classification is an essential tool for Internet service providers to manage network traffic, provide users with the intended quality of service (QoS), and perform surveillance. QoS measures prioritize a network's traffic type over other traffic based on preset criteria; for instance, it gives higher priority or bandwidth to video traffic over website browsing traffic. Internet packet classification methods are also used for automated intrusion detection. They analyze incoming traffic patterns and identify malicious …


Blast Shock-Wave Characterization In Experimental Shock Tubes, Sudeepto Kahali Dec 2020

Blast Shock-Wave Characterization In Experimental Shock Tubes, Sudeepto Kahali

Dissertations

Blast-induced traumatic brain injuries have affected U.S. soldiers deployed for extended periods in the gulf and Afghanistan wars. To identify the biomechanical and biochemical mechanisms of injury, critical in the identification of diagnostic and therapeutic tools, compressed gas-driven shock tubes are used by investigators to study shockwave-animal specimen interactions and its biological consequences. However, shock tubes are designed and operated in a variety of geometry with a range of process parameters, and the quality of shock wave characteristics relevant to field conditions and therefore the study of blast-induced traumatic brain injuries suffered by soldiers is affected by those conditions. Lab-to-lab …


Studies Of Two-Phase Flow With Soluble Surfactant, Ryan Peter Atwater Aug 2020

Studies Of Two-Phase Flow With Soluble Surfactant, Ryan Peter Atwater

Dissertations

Numerical methods are developed for accurate solution of two-phase flow in the zero Reynolds number limit of Stokes flow, when surfactant is present on a drop interface and in its bulk phase interior. The methods are designed to achieve high accuracy when the bulk Péclet number is large, or equivalently when the bulk phase surfactant has small diffusivity

In the limit of infinite bulk Péclet number the advection-diffusion equation that governs evolution of surfactant concentration in the bulk is singularly perturbed, indicating a separation of spatial scales. A hybrid numerical method based on a leading order asymptotic reduction in this …


Modeling Single Microtubules As A Colloidal System To Measure The Harmonic Interactions Between Tubulin Dimers In Bovine Brain Derived Versus Cancer Cell Derived Microtubules, Arooj Aslam May 2020

Modeling Single Microtubules As A Colloidal System To Measure The Harmonic Interactions Between Tubulin Dimers In Bovine Brain Derived Versus Cancer Cell Derived Microtubules, Arooj Aslam

Dissertations

The local properties of tubulin dimers dictate the properties of the larger microtubule assembly. In order to elucidate this connection, tubulin-tubulin interactions are be modeled as harmonic interactions to map the stiffness matrix along the length of the microtubule. The strength of the interactions are measured by imaging and tracking the movement of segments along the microtubule over time, and then performing a fourier transform to extract the natural vibrational frequencies. Using this method the first ever reported experimental phonon spectrum of the microtubule is reported. This method can also be applied to other biological materials, and opens new doors …


Calculating Elastic Properties Of Confined Simple Fluids, Christopher D. Dobrzanski May 2020

Calculating Elastic Properties Of Confined Simple Fluids, Christopher D. Dobrzanski

Dissertations

Confinement in nanoporous materials is known to affect many properties of the fluids confined within their pores. The elastic properties are no exception. This dissertation begins with an overview of the relevant literature on ways of obtaining elastic properties of confined fluids. It outlines some fundamental gaps in our understanding. The chapters following address some of these gaps in understanding elastic properties of the confined fluid, in particular, how the shape of the confining pore matters, how supercriticality effects the properties, how an equation of state designed for confined fluids can be used to calculate elastic properties, and if an …


High-Speed Data Communications For Vehicular Networks Using Free-Space Optical Communications, Yagiz Kaymak Dec 2018

High-Speed Data Communications For Vehicular Networks Using Free-Space Optical Communications, Yagiz Kaymak

Dissertations

The demand for high-speed Internet access for vehicles, such as high-speed trains (HSTs) and cars, is on the rise. Several Internet access technologies that use radio frequency are being considered for vehicular networking. Radio-frequency communications technologies cannot provide high data rates due to interference, bandwidth limitations, and the inherent limited data rates of radio technology. Free-space optical communications (FSOC) is an alternative approach and a line-of-sight (LOS) technology that uses modulated light to transfer data between two free-space optical (FSO) transceivers. FSOC systems for vehicular networks are expected to provide data rates in the range of Gbps for stationary and …


Structural Studies To Determine The Mechanisms Supporting Multiferroic And Ferroelectric Properties Of Complex Oxides, Han Zhang May 2018

Structural Studies To Determine The Mechanisms Supporting Multiferroic And Ferroelectric Properties Of Complex Oxides, Han Zhang

Dissertations

Multiferroics are a class of materials which possess both magnetic and electrical polarization with possible coupling between them. They show promise to enable new sensors and data storage devices with novel features, such as the possibility of writing polarization bits with magnetic fields at low power. The coexisting magnetic and ferroelectric order parameters are usually weakly coupled, preventing practical use. The development and study of new classes of materials with large magnetoelectric couplings is of high importance. Understanding the structure of these materials is key to this effort.

As one class of these systems, the RX3(BO3)4 has …