Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

Energy

Doctoral Dissertations

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Software-Defined Infrastructure For Iot-Based Energy Systems, Stephen Lee Oct 2019

Software-Defined Infrastructure For Iot-Based Energy Systems, Stephen Lee

Doctoral Dissertations

Internet of Things (IoT) devices are becoming an essential part of our everyday lives. These physical devices are connected to the internet and can measure or control the environment around us. Further, IoT devices are increasingly being used to monitor buildings, farms, health, and transportation. As these connected devices become more pervasive, these devices will generate vast amounts of data that can be used to gain insights and build intelligence into the system. At the same time, large-scale deployment of these devices will raise new challenges in efficiently managing and controlling them. In this thesis, I argue that the IoT …


Dft Investigations Of Hydrogen Storage Materials, Gang Wang Jan 2016

Dft Investigations Of Hydrogen Storage Materials, Gang Wang

Doctoral Dissertations

"Hydrogen serves as a promising new energy source having no pollution and abundant on earth. However the most difficult problem of applying hydrogen is to store it effectively and safely, which is smartly resolved by attempting to keep hydrogen in some metal hydrides to reach a high hydrogen density in a safe way. There are several promising metal hydrides, the thermodynamic and chemical properties of which are to be investigated in this dissertation.

Sodium alanate (NaAlH4) is one of the promising metal hydrides with high hydrogen storage capacity around 7.4 wt. % and relatively low decomposition temperature of …


Pattern Recognition For Electric Power System Protection, Yong Sheng Oct 2002

Pattern Recognition For Electric Power System Protection, Yong Sheng

Doctoral Dissertations

The objective of this research is to demonstrate pattern recognition tools such as decision trees (DTs) and neural networks that will improve and automate the design of relay protection functions in electric power systems. Protection functions that will benefit from the research include relay algorithms for high voltage transformer protection (TP) and for high impedance fault (HIF) detection. A methodology, which uses DTs and wavelet analysis to distinguish transformer internal faults from other conditions that are easily mistaken for internal faults, has been developed. Also, a DT based solution is proposed to discriminate HIFs from normal operations that may confuse …