Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Nitro Group Reduction For Use In Organic, Cathodic Materials, Brock G. Goeden Apr 2021

Nitro Group Reduction For Use In Organic, Cathodic Materials, Brock G. Goeden

Honors Thesis

The industrial demand for higher capacity, light-weight battery materials has skyrocketed in recent years due to heavy investments in portable electronics, electronic vehicles, and renewable energy sources. However, rechargeable battery technology has seen little improvement since the invention of the Lithium-Ion battery in the 1980s. The low energy density of the traditionally utilized LiCoO2 cathodic material (specific capacity: 272 mAh g-1), has limited its potential to meet these increasing demands. To solve this problem, our research group is investigating new types of lightweight, organic, polymeric materials with conductive backbones as a possible replacement for the cathodic materials in Lithium-Ion batteries. …


Development Of An Advanced Zinc Air Flow Battery System (Phase 2), Jingyu Si Aug 2020

Development Of An Advanced Zinc Air Flow Battery System (Phase 2), Jingyu Si

Theses and Dissertations

A zinc-air battery is the promising energy storage technology for large-scale energy storage applications due to its low cost, environmental friendliness, and high energy density. However, the electrically rechargeable zinc−air batteries suffer from poor energy efficiency and cycle life because of critical problems such as passivation, dendrite growth, and hydrogen evolution reaction. The proliferation of zinc−air batteries is limited.

The zinc-air flow battery combines the advantages of both a zinc-air battery and a redox flow battery. This combination permits the zinc-air flow battery to compete with the current leading battery technologies in the marketplace. A rechargeable Zn-air flow battery with …


Computational Materials Science And Engineering: Model Development And Case Study, Yihan Xu Aug 2020

Computational Materials Science And Engineering: Model Development And Case Study, Yihan Xu

Theses and Dissertations

This study presents three tailored models for popular problems in energy storage and biological materials which demonstrate the application of computational materials science in material system development in these fields. The modeling methods can be extended for solving similar practical problems and applications.

In the first application, the thermo-mechanical stress concentrated region in planar sodium sulfur (NaS) cells with large diameter and different container materials has been estimated as well as the shear and normal stresses in these regions have been quantified using finite-element analysis (FEA) computation technique. It is demonstrated that the primary failure mechanism in the planar NaS …


Software-Defined Infrastructure For Iot-Based Energy Systems, Stephen Lee Oct 2019

Software-Defined Infrastructure For Iot-Based Energy Systems, Stephen Lee

Doctoral Dissertations

Internet of Things (IoT) devices are becoming an essential part of our everyday lives. These physical devices are connected to the internet and can measure or control the environment around us. Further, IoT devices are increasingly being used to monitor buildings, farms, health, and transportation. As these connected devices become more pervasive, these devices will generate vast amounts of data that can be used to gain insights and build intelligence into the system. At the same time, large-scale deployment of these devices will raise new challenges in efficiently managing and controlling them. In this thesis, I argue that the IoT …


Lithium Molybdate-Sulfur Battery., Ruchira Ravinath Dharmasena May 2019

Lithium Molybdate-Sulfur Battery., Ruchira Ravinath Dharmasena

Electronic Theses and Dissertations

Rechargeable energy storage systems play a vital role in today’s automobile industry with the emergence of electric vehicles (EVs). In order to meet the targets set by the department of energy (DOE), there is an immediate need of new battery chemistries with higher energy density than the current Li- ion technology. Lithium–sulfur (Li–S) batteries have attracted enormous attention in the energy-storage, due to their high specific energy density of 2600 Wh kg-1 and operational voltage of 2.0 V. Despite the promising electrochemical characteristics, Li-S batteries suffer from serious technical challenges such as dissolution of polysulfides Li2Sx …


Lignin-Based Li-Ion Anode Materials Synthesized From Low-Cost Renewable Resources, Nicholas William Mcnutt Aug 2016

Lignin-Based Li-Ion Anode Materials Synthesized From Low-Cost Renewable Resources, Nicholas William Mcnutt

Doctoral Dissertations

In today’s world, the demand for novel methods of energy storage is increasing rapidly, particularly with the rise of portable electronic devices, electric vehicles, and the personal consumption and storage of solar energy. While other technologies have arguably improved at a rate that is exponential in accordance with Moore’s law, battery technology has lagged behind largely due to the difficulty in devising new electric storage systems that are simultaneously high performing, inexpensive, and safe.

In order to tackle these challenges, novel Li-ion battery anodes have been developed at Oak Ridge National Laboratory that are made from lignin, a low-cost, renewable …


A New Paradigm Of Maximizing The Wind And Solar Penetration– A Economical Assessment, Yuming Chen May 2016

A New Paradigm Of Maximizing The Wind And Solar Penetration– A Economical Assessment, Yuming Chen

Theses and Dissertations

Wind and solar energies are the most potential and widely-used renewable energies. But in most cases these energies cannot be maximized because of transmission line capacity and their remote location. Therefore, this thesis proposes a new paradigm which using battery transportation and logistics instead of transmission line, to maximize wind and solar energies. The main focus of this work is to investigate the economical feasibilities of this new paradigm.

In the first part, different models and application are presented. The purpose is finding an appropriate model which can make full use of existing grid resources such as transmission line and …


Nano-Structured Electrocatalysts For High Performance Lithium Sulfur Batteries, Negar Mosavati Jan 2016

Nano-Structured Electrocatalysts For High Performance Lithium Sulfur Batteries, Negar Mosavati

Wayne State University Dissertations

Ni nanoparticles has been investigated as a carbon-free cathode material for dissolved polysulfide Li-S battery. A series of Ni nanoparticles with nominal particle size of 20, 40, and 100 nm have been used as electrocatalysts, and the effect of particle size on Li-S battery performance has been investigated. In addition, graphene has been chosen as a support to anchor the Ni nanoparticles, and the synergetic effect of carbon material and Ni nanoparticles on Li-S battery electrochemical performance has been studied. The results indicated there is a strong particle size effect. Ni/graphene electrode exhibits a capacity of 753 mAh g-1 sulfur …


Study Of Tin-Based Electrodes And Ionic Liquid Electrolytes For Energy Storage Materials, Mahbuba Ara Jan 2014

Study Of Tin-Based Electrodes And Ionic Liquid Electrolytes For Energy Storage Materials, Mahbuba Ara

Wayne State University Dissertations

Due to rapid increase in energy demand, modern society necessitates to develop high power, light-weight, and more economical energy storage systems. Rechargeable Li-ion batteries and Li-oxygen batteries have become the most promising energy devices in terms of energy and power densities. Diverse research on these battery components is being carried out by researchers worldwide to improve power density to meet the future requirements. The possible routes to improving power density of Li-ion as well as Li-oxygen batteries is to use nanostructured, hybrid electrode materials since they can significantly enhance kinetics of electrochemical reactions; and ion-conducting, low volatile electrolytes since they …


Computational Modeling Of Graphene Oxide Exfoliation And Lithium Storage Characteristics, Reza Mortezaee Jan 2013

Computational Modeling Of Graphene Oxide Exfoliation And Lithium Storage Characteristics, Reza Mortezaee

Browse all Theses and Dissertations

Graphene oxide is a two dimensional material obtained by adsorption of oxygen or oxygen-containing groups on graphene. Stacked layers of graphene oxide constitute graphite oxide. These materials have various applications such as a source material for graphene production, transport support for electron microscopy, flexible organic photovoltaic cells and use in Li-ion batteries. Generation of exfoliated graphene oxide from a graphite oxide precursor is achieved relatively easily in solution as compared to graphene exfoliation. In this study we investigate the details of the graphene oxide exfoliation procedure in solution by calculating the Gibb's free energies and reaction rates. We consider two …


The Applications And Limitations Of Printable Batteries, Matthew Delmanowski Jun 2010

The Applications And Limitations Of Printable Batteries, Matthew Delmanowski

Graphic Communication

This study focuses on the potential applications for printed batteries and how they could affect the printing industry. It also analyzes the main problems associated with manufacturing this technology and what needs to be done to overcome these issues. To find the answers to these questions, two methods of research were used. The first was through the elite and specialized interviewing of Dr. Scott Williams of Rochester Institute of Technology and Professor Nancy Cullins from Cal Poly. The second form of research was a common, yet useful, method called secondary research. This entailed looking at recent written research papers about …