Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

Journal

Lithium ion battery

2013

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Controllable Synthesis Of Dispersed Spherical Fe3O4 Nanoparticles As Lithium-Inserted Materials, Hong-Li Zou, Wei-Shan Li Dec 2013

Controllable Synthesis Of Dispersed Spherical Fe3O4 Nanoparticles As Lithium-Inserted Materials, Hong-Li Zou, Wei-Shan Li

Journal of Electrochemistry

Dispersed spherical Fe3O4 nanoparticles were synthesized by a hydrothermal method. The influences of odecyl trimethyl ammonium bromide (DTAB) concentration on the morphology and particle size of the as-prepared Fe3O4 were studied. Electrochemical performance of the as-prepared sample as anode materials of lithium ion battery was investigated. It is found that the as-prepared sample exhibits superior rate performance and cycle performance. The nano-sized materials provide structural stability and favor the transfer of lithium ions.


Synthesis And Electrochemical Property Of Li2Fesio4/C Cathode Material By Solid State Method, Jiao-Li Sun, Zhi-Jiao Chen, Yi-Xiao Li, Hu Cheng Dec 2013

Synthesis And Electrochemical Property Of Li2Fesio4/C Cathode Material By Solid State Method, Jiao-Li Sun, Zhi-Jiao Chen, Yi-Xiao Li, Hu Cheng

Journal of Electrochemistry

Li2FeSiO4/C cathode material was synthesized using Li2SiO3 and FeC2O4 as raw materials by solid state method. The structure and morphology of the material were characterized by XRD and SEM. The electrochemical properties of the material were studied by constant-current cyclic testing. The results show that Li2FeSiO4/C has a good electrochemical performance. The first discharge capacity of Li2FeSiO4/C cathode material at 30oC reached 167 mAhg-1 when cycled at 10 mAg-1 between 1.5 and 4.8 V.


Synthesis And Electrochemical Properties Of Li(Ni0.5Co0.2Mn0.3)1-2xTiXNbXO2, Yong Tang, Qin-Lin Liao, Xiang-An Guo Aug 2013

Synthesis And Electrochemical Properties Of Li(Ni0.5Co0.2Mn0.3)1-2xTiXNbXO2, Yong Tang, Qin-Lin Liao, Xiang-An Guo

Journal of Electrochemistry

The cathode-active materials of layered Li(Ni0.5Co0.2Mn0.3)1-2xTixNbxO2(x=0, 0.002, 0.005, 0.01, 0.02)composites were synthesized by the thermal treatment of the coprecipitated precursor at 900 oC in air. The effects of Ti-Nb co-dopants on the structural and electrochemical properties of Li(Ni0.5Co0.2Mn0.3)O2 were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical experiments. The results show that the small amounts of Ti-Nb co-dopants in Li(Ni0.5Co0.2Mn0.3)O2significantly decreased the degree of cation mixing in …


The Effect Of Precursors On Performance Of Lini0.5Co0.2Mn0.3O2 Cathode Material, Dong-Ge Hu, Zhang-Zhi Wang, Jia-Li Liu, Tao Huang, Ai-Shui Yu Jun 2013

The Effect Of Precursors On Performance Of Lini0.5Co0.2Mn0.3O2 Cathode Material, Dong-Ge Hu, Zhang-Zhi Wang, Jia-Li Liu, Tao Huang, Ai-Shui Yu

Journal of Electrochemistry

Commercial LiNi0.5Co0.2Mn0.3O2 material is generally prepared by a combination of co-precipitation and solid state reaction method. The particle size distribution and morphology of Ni0.5Co0.2Mn0.3(OH)2 precursor have a great impact on the electrochemical performance of LiNi0.5Co0.2Mn0.3O2. In this work, the crystal structure and surface morphology of LiNi0.5Co0.2Mn0.3O2 prepared by three different precursors were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Particle size distribution, tap density and electrochemical performance were …


Effect Of Ethyl Propionate On Low-Temperature Performance Of Lifepo4-Based Li-Ion Battery, Xiao-Ping Li, Lian-Sheng Hao, Wei-Shan Li, Meng-Qing Xu, Li-Dan Xing Jun 2013

Effect Of Ethyl Propionate On Low-Temperature Performance Of Lifepo4-Based Li-Ion Battery, Xiao-Ping Li, Lian-Sheng Hao, Wei-Shan Li, Meng-Qing Xu, Li-Dan Xing

Journal of Electrochemistry

A linear carboxylic, ester ethyl propionate (EP), was used as the co-solvent of carbonates, ethylene carbonate (EC), ethyl-methyl carbonate (EMC) and dimethyl carbonate (DMC), and its effect on low-temperature performance of LiFePO4-based Li-ion battery was studied by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge test. The application of EP enhances the ionic conductivity of the electrolyte, improves the compatibility of the electrolyte with both LiFePO4 and graphite materials, and thus improves the low-temperature performance of LiFePO4-based Li-ion battery. The Li-ion battery using the optimized electrolyte of 1 mol·L-1 LiPF6/EC:EMC:DMC:EP …


Polypyrrole-Transition Metal-Oxygen Coordination Complexes As High Performance Lithium Storage Material, Ya Mao, Qingyu Kong, Bingkun Guo, Zhaoxiang Wang, Liquan Chen Jun 2013

Polypyrrole-Transition Metal-Oxygen Coordination Complexes As High Performance Lithium Storage Material, Ya Mao, Qingyu Kong, Bingkun Guo, Zhaoxiang Wang, Liquan Chen

Journal of Electrochemistry

No abstract provided.