Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

Research outputs 2014 to 2021

2021

[RSTDPub]

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Sub-Micron Moulding Topological Mass Transport Regimes In Angled Vortex Fluidic Flow, Thaar M. D. Alharbi, Matt Jellicoe, Xuan Luo, Kasturi Vimalanathan, Ibrahim K. Alsulami, Bediea S. Al Harbi, Aghil Igder, Fayed A. J. Alrashaidi, Xianjue Chen, Keith A. Stubbs, Justin M. Chalker, Wei Zhang, Ramiz A. Boulos, Darryl B. Jones, Jamie S. Quinton, Colin L. Raston Jan 2021

Sub-Micron Moulding Topological Mass Transport Regimes In Angled Vortex Fluidic Flow, Thaar M. D. Alharbi, Matt Jellicoe, Xuan Luo, Kasturi Vimalanathan, Ibrahim K. Alsulami, Bediea S. Al Harbi, Aghil Igder, Fayed A. J. Alrashaidi, Xianjue Chen, Keith A. Stubbs, Justin M. Chalker, Wei Zhang, Ramiz A. Boulos, Darryl B. Jones, Jamie S. Quinton, Colin L. Raston

Research outputs 2014 to 2021

Shear stress in dynamic thin films, as in vortex fluidics, can be harnessed for generating non-equilibrium conditions, but the nature of the fluid flow is not understood. A rapidly rotating inclined tube in the vortex fluidic device (VFD) imparts shear stress (mechanical energy) into a thin film of liquid, depending on the physical characteristics of the liquid and rotational speed,ω, tilt angle,θ, and diameter of the tube. Through understanding that the fluid exhibits resonance behaviours from the confining boundaries of the glass surface and the meniscus that determines the liquid film thickness, we have established specific topological mass transport regimes. …


Green Underwater Wireless Communications Using Hybrid Optical-Acoustic Technologies, Kazi Y. Islam, Iftekhar Ahmad, Daryoush Habibi, M. Ishtiaque A. Zahed, Joarder Kamruzzaman Jan 2021

Green Underwater Wireless Communications Using Hybrid Optical-Acoustic Technologies, Kazi Y. Islam, Iftekhar Ahmad, Daryoush Habibi, M. Ishtiaque A. Zahed, Joarder Kamruzzaman

Research outputs 2014 to 2021

Underwater wireless communication is a rapidly growing field, especially with the recent emergence of technologies such as autonomous underwater vehicles (AUVs) and remotely operated vehicles (ROVs). To support the high-bandwidth applications using these technologies, underwater optics has attracted significant attention, alongside its complementary technology – underwater acoustics. In this paper, we propose a hybrid opto-acoustic underwater wireless communication model that reduces network power consumption and supports high-data rate underwater applications by selecting appropriate communication links in response to varying traffic loads and dynamic weather conditions. Underwater optics offers high data rates and consumes less power. However, due to the severe …