Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

University of Massachusetts Amherst

Theses/Dissertations

Self-assembly

Publication Year

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Modeling Chain Packing In Complex Phases Of Self-Assembled Block Copolymers, Anugu Abhiram Reddy Mar 2022

Modeling Chain Packing In Complex Phases Of Self-Assembled Block Copolymers, Anugu Abhiram Reddy

Doctoral Dissertations

Block copolymer (BCP) melts undergo microphase seperation and form ordered soft matter crystals with varying domain shapes and symmetries. We study the con- nection between diblock copolymer molecular designs and thermodynamic selection of ordered crystals by modeling features of variable sub-domain geometry filled with individual blocks within non-canonical sphere-like and network phases that together with layered, cylindrical and canonical spherical phases forms “natural forms” of self- assembled amphiphilic soft matter at large. First, we present a model to revise our understanding of optimal Frank-Kasper sphere-like morphologies by advancing the- ory to account for varying domain volumes. We then develop generic …


Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber Mar 2022

Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber

Doctoral Dissertations

Mesoscale materials, with feature sizes in the range of one hundred nanometers to tens of micrometers, are ubiquitous in Nature. In organisms, mesoscale building blocks connect the properties of underlying molecular and nanoscructures to those of macroscale, organism-scale materials through hierarchical assemblies of recurring structural motifs. The collective action of large numbers of mesoscale features can afford stunning features like the structural color of the morpho butterfly wing, calcium ion-mediated movement in muscle, and wood structures like xylem that can support enormous external compressive loads and negative internal pressure to transport nutrients throughout an organism. In synthetic systems, the design, …


Self-Assembling Networks In Soft Materials, Ishan Prasad Jul 2018

Self-Assembling Networks In Soft Materials, Ishan Prasad

Doctoral Dissertations

This dissertation presents a study on heterogeneous network structure in two distinct classes of soft material systems: disordered assemblies of jammed binary spheres and ordered morphologies of block copolymer melts. The aim is to investigate the combined role of geometry and entropy in structure formation of soft matter assemblies. First, we investigate the influence of particle size asymmetry on structural properties of jammed binary sphere mixtures. We give evidence of two distinct classes of materials separated by a critical size ratio that marks the onset of a sharp transition due to simultaneous jamming of a sub-component of the packing. We …


Protein-Nanoparticle Co-Engineering: Self-Assembly, Intracellular Protein Delivery, And Crispr/Cas9-Based Gene Editing, Rubul Mout Nov 2017

Protein-Nanoparticle Co-Engineering: Self-Assembly, Intracellular Protein Delivery, And Crispr/Cas9-Based Gene Editing, Rubul Mout

Doctoral Dissertations

Direct cytoplasmic delivery of gene editing nucleases such CRISPR/Cas9 systems and therapeutic proteins provides enormous opportunities in curing human genetic diseases, and assist research in basic cell biology. One approach to attain such a goal is through engineering nanotechnological tools to mimic naturally existing intra- and extracellular protein delivery/transport systems. Nature builds transport systems for proteins and other biomolecules through evolution-derived sophisticated molecular engineering. Inspired by such natural assemblies, I employed molecular engineering approaches to fabricate self-assembled nanostructures to use as intracellular protein delivery tools. Briefly, proteins and gold nanoparticles were co-engineered to carry complementary electrostatic recognition elements. When these …


Particles Confined By Fluid Interfaces: Imaging Particle Motion, Interface Deformation And Capillary Forces, Paul Y. Kim Mar 2017

Particles Confined By Fluid Interfaces: Imaging Particle Motion, Interface Deformation And Capillary Forces, Paul Y. Kim

Doctoral Dissertations

Small solid particles, confined in two-dimensions by fluid interfaces, were studied by a variety of experimental methods to understand particle motion, menisci shapes near interface-supported particles, and capillary interactions among such particles. Unwanted evaporation was circumvented by adopting non-volatile ionic liquids to create the fluid interfaces. A related application, employment of ionic liquids to float cryo-microtomed polymer sections, was also developed. The Brownian motions of nanospheres and nanorods in free-standing ionic liquid films were visualized in situ by high resolution scanning electron microscopy, which images features almost 100× smaller than possible in an optical microscope. For suspensions that are dilute …


Functional Nanostructures From Nanoparticle Building Blocks, Jimmy Lawrence Mar 2015

Functional Nanostructures From Nanoparticle Building Blocks, Jimmy Lawrence

Doctoral Dissertations

Advances in the synthetic strategies of engineered nanomaterials, multifunctional molecules and polymers have opened pathways for the development of functional nanomaterials having unique optoelectronic, mechanical, and biological properties. By designing the chemistry of surface ligands, the organic interface of nanoparticles, one can further the versatility and utilization of engineered nanomaterials, opening pathways for breakthroughs in sensing, catalysis, and delivery using nanomaterials. This thesis describes the synthesis and characterization of small molecule and polymer ligand functionalized inorganic nanoparticles (e.g., metal, semiconducting). Embedding specific chemical functionality into the ligand periphery of nanoparticles enables the resulting functional nanoparticles to react selectively …