Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 118

Full-Text Articles in Engineering

An Efficient Privacy-Preserving Framework For Video Analytics, Tian Zhou Mar 2024

An Efficient Privacy-Preserving Framework For Video Analytics, Tian Zhou

Doctoral Dissertations

With the proliferation of video content from surveillance cameras, social media, and live streaming services, the need for efficient video analytics has grown immensely. In recent years, machine learning based computer vision algorithms have shown great success in various video analytic tasks. Specifically, neural network models have dominated in visual tasks such as image and video classification, object recognition, object detection, and object tracking. However, compared with classic computer vision algorithms, machine learning based methods are usually much more compute-intensive. Powerful servers are required by many state-of-the-art machine learning models. With the development of cloud computing infrastructures, people are able …


Reactive Chemistries For Protein Labeling, Degradation, And Stimuli Responsive Delivery, Myrat Kurbanov Nov 2023

Reactive Chemistries For Protein Labeling, Degradation, And Stimuli Responsive Delivery, Myrat Kurbanov

Doctoral Dissertations

Reactive chemistries for protein chemical modification play an instrumental role in chemical biology, proteomics, and therapeutics. Depending on the application, the selectivity of these modifications can range from precise modification of an amino acid sequence by genetic manipulation of protein expression machinery to a stochastic modification of lysine residues on the protein surface. Ligand-Directed (LD) chemistry is one of the few methods for targeted modification of endogenous proteins without genetic engineering. However, current LD strategies are limited by stringent amino acid selectivity. To bridge this gap, this thesis focuses on the development of highly reactive LD Triggerable Michael Acceptors (LD-TMAcs) …


Controlling Mechanical Properties Of Well-Defined Polymer Networks, Ipek Sacligil Apr 2023

Controlling Mechanical Properties Of Well-Defined Polymer Networks, Ipek Sacligil

Doctoral Dissertations

Polymer networks are one of the most versatile and highly studied material class that revolutionized many aspects of life. Connecting the final network properties to the molecular parameters of its building blocks remains a major research thrust. Recent advances in network synthesis techniques allowed for accurate predictions of elastic modulus in model networks. Tew Group has developed highly efficient, thiol-norbornene networks with controllable mechanical properties. Chapter 2 focuses on modifying the gel fracture energy predicted by Lake-Thomas theory by accounting for loop defects. This study allowed for a priori estimates of gel fracture energy by combining theory, experiments, and simulations. …


Effect Of Chemical Identity And Morphology On Amphiphilic-Zwitterionic Block Copolymer Membranes, Ria Ghosh Apr 2023

Effect Of Chemical Identity And Morphology On Amphiphilic-Zwitterionic Block Copolymer Membranes, Ria Ghosh

Doctoral Dissertations

Amphiphilic block copolymers have gained a broad research interest attributed to their self-assembly properties over a range of pH, temperature, and ionic strength. Polyzwitterions have attracted special attention due to their hydrophilicity, charge sensitivity and coulombic attraction of the opposite charges over a range of environments making them a popular material of study in the field of stimuli responsive systems, for example in self-healing hydrogels, and water transport membranes. Combining the stimuli responsiveness and higher hydrophilicity of zwitterionic polymers with self-assembly behavior of amphiphilic block copolymers created an interest to study the effect of composition and identity of the zwitterionic …


Thermal Transport Across 2d/3d Van Der Waals Interfaces, Cameron Foss Apr 2023

Thermal Transport Across 2d/3d Van Der Waals Interfaces, Cameron Foss

Doctoral Dissertations

Designing improved field-effect-transistors (FETs) that are mass-producible and meet the fabrication standards set by legacy silicon CMOS manufacturing is required for pushing the microelectronics industry into further enhanced technological generations. Historically, the downscaling of feature sizes in FETs has enabled improved performance, reduced power consumption, and increased packing density in microelectronics for several decades. However, many are claiming Moore's law no longer applies as the era of silicon CMOS scaling potentially nears its end with designs approaching fundamental atomic-scale limits -- that is, the few- to sub-nanometer range. Ultrathin two-dimensional (2D) materials present a new paradigm of materials science and …


Vapor Deposition Of Self-Wrinkling Polymer Films, Robert N. Enright Apr 2023

Vapor Deposition Of Self-Wrinkling Polymer Films, Robert N. Enright

Doctoral Dissertations

Initiated chemical vapor deposition is used to grow polymer films on substrates of various three-dimensional shapes which exhibit wrinkling during film growth, termed self-wrinkling. Self-wrinkling avoids separate film growth and compression steps and more-closely mimics processes observed in nature. The self-wrinkling process is elucidated on flat elastic substrates, revealing control over the amount of compressive stress by changing deposition conditions. Next, a study of films grown on liquid substrates with interface profiles that either resemble cylinders or contain repeating concave cones, saddles, and bowls affirms the principle that the wrinkle roundness increases with interface curvature. The selection of high versus …


Water Resources Planning Under Deep Uncertainty For Physically, Socially, And Politically Complex Systems, Sarah St. George Freeman Feb 2023

Water Resources Planning Under Deep Uncertainty For Physically, Socially, And Politically Complex Systems, Sarah St. George Freeman

Doctoral Dissertations

Water supply systems, particularly those of large cities, are complex systems linking supply, regulatory and distribution infrastructure, and points of use. Despite their physical complexities, it is infrequent that full supply, distribution, end use, and feedbacks therein are considered in an integrated manner. These complex systems-of-systems face large uncertainties related to physical aspects such as degradation of infrastructure, changing demand, and climate variability and change. Though great, such physical uncertainties often pale in comparison to the those related to the human systems in place to manage them and yet uncertainty in the decision-making landscape is often grossly simplified in our …


Enabling Daily Tracking Of Individual’S Cognitive State With Eyewear, Soha Rostaminia Oct 2022

Enabling Daily Tracking Of Individual’S Cognitive State With Eyewear, Soha Rostaminia

Doctoral Dissertations

Research studies show that sleep deprivation causes severe fatigue, impairs attention and decision making, and affects our emotional interpretation of events, which makes it a big threat to public safety, and mental and physical well-being. Hence, it would be most desired if we could continuously measure one’s drowsiness and fatigue level, their emotion while making decisions, and assess their sleep quality in order to provide personalized feedback or actionable behavioral suggestions to modulate sleep pattern and alertness levels with the aim of enhancing performance, well-being, and quality of life. While there have been decades of studies on wearable devices, we …


Unobtrusive Assessment Of Upper-Limb Motor Impairment Using Wearable Inertial Sensors, Brandon R. Oubre Oct 2022

Unobtrusive Assessment Of Upper-Limb Motor Impairment Using Wearable Inertial Sensors, Brandon R. Oubre

Doctoral Dissertations

Many neurological diseases cause motor impairments that limit autonomy and reduce health-related quality of life. Upper-limb motor impairments, in particular, significantly hamper the performance of essential activities of daily living, such as eating, bathing, and changing clothing. Assessment of impairment is necessary for tracking disease progression, measuring the efficacy of interventions, and informing clinical decision making. Impairment is currently assessed by trained clinicians using semi-quantitative rating scales that are limited by their reliance on subjective, visual assessments. Furthermore, existing scales are often burdensome to administer and do not capture patients' motor performance in home and community settings, resulting in a …


Synthesis And Assembly Of Polymer Materials At Interfaces, Xiaoshuang Wei Oct 2022

Synthesis And Assembly Of Polymer Materials At Interfaces, Xiaoshuang Wei

Doctoral Dissertations

The overarching goal of the thesis is to understand growth and assembly of polymer materials at interfaces. Chapter 2 and Chapter 3 study simultaneous polymer growth and assembly at fluid interfaces, where in-situ photopolymerization and vapor phase deposition were utilized to grow polymers, respectively. Chapter 4 leverages capillary condensation to pattern polymer growth at solid substrates. Chapter 1 provides background information on polymer materials at interfaces, and vapor phase deposition method (initiated chemical vapor deposition, iCVD) to grow polymers. This chapter also reviews polymer thin film wetting, and colloidal assemblies at interfaces. In Chapter 2, we demonstrate the preparation …


Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Hyperspectral Unmixing: A Theoretical Aspect And Applications To Crism Data Processing, Yuki Itoh Oct 2022

Hyperspectral Unmixing: A Theoretical Aspect And Applications To Crism Data Processing, Yuki Itoh

Doctoral Dissertations

Hyperspectral imaging has been deployed in earth and planetary remote sensing, and has contributed the development of new methods for monitoring the earth environment and new discoveries in planetary science. It has given scientists and engineers a new way to observe the surface of earth and planetary bodies by measuring the spectroscopic spectrum at a pixel scale. Hyperspectal images require complex processing before practical use. One of the important goals of hyperspectral imaging is to obtain the images of reflectance spectrum. A raw image obtained by hyperspectral remote sensing usually undergoes conversion to a physical quantity representing the intensity of …


Enabling Nanoimprint Lithography Techniques Across Multiple Manufacturing Processes, Vincent Einck Sep 2022

Enabling Nanoimprint Lithography Techniques Across Multiple Manufacturing Processes, Vincent Einck

Doctoral Dissertations

Advanced nanooptics in the areas of flat lenses, diffractive elements, and tunable emissivity require a route to high throughput manufacturing. Nanooptics are often demanding of high refractive index materials, nanometer precision and ease of fabrication. Nanoimprint lithography (NIL) is a low-cost, high throughput manufacturing technique beginning to be realized in commercial industry.1,2 The NIL process is an ideal manufacturing candidate due to its ability to have a fast process time, efficient use of materials, repeatability and high precision while also having wide diversity of potential structures and material choices. Appling NIL techniques to other facets of manufacturing enable the …


Remote Sensing Of High Latitude Rivers: Approaches, Insights, And Future Ramifications, Merritt E. Harlan Jun 2022

Remote Sensing Of High Latitude Rivers: Approaches, Insights, And Future Ramifications, Merritt E. Harlan

Doctoral Dissertations

High latitude rivers across the pan-Arctic domain are changing due to changes in climate and positive Arctic feedback loops. Understanding and contextualizing these changes is challenging due to a lack of data and methods for estimating and modeling river discharge, and mapping rivers. Remote sensing, and the availability of satellite imagery can provide ways to overcome these challenges. Through combining various forms of fieldwork, modeling, deep learning, and remote sensing, we contribute methodologies and knowledge to three key challenges associated with better understanding high latitude rivers. In the first chapter, we combine field data that can be rapidly deployed with …


Models And Machine Learning Techniques For Improving The Planning And Operation Of Electricity Systems In Developing Regions, Santiago Correa Cardona Jun 2022

Models And Machine Learning Techniques For Improving The Planning And Operation Of Electricity Systems In Developing Regions, Santiago Correa Cardona

Doctoral Dissertations

The enormous innovation in computational intelligence has disrupted the traditional ways we solve the main problems of our society and allowed us to make more data-informed decisions. Energy systems and the ways we deliver electricity are not exceptions to this trend: cheap and pervasive sensing systems and new communication technologies have enabled the collection of large amounts of data that are being used to monitor and predict in real-time the behavior of this infrastructure. Bringing intelligence to the power grid creates many opportunities to integrate new renewable energy sources more efficiently, facilitate grid planning and expansion, improve reliability, optimize electricity …


Improving The Programmability Of Networked Energy Systems, Noman Bashir Jun 2022

Improving The Programmability Of Networked Energy Systems, Noman Bashir

Doctoral Dissertations

Global warming and climate change have underscored the need for designing sustainable energy systems. Sustainable energy systems, e.g., smart grids, green data centers, differ from the traditional systems in significant ways and present unique challenges to system designers and operators. First, intermittent renewable energy resources power these systems, which break the notion of infinite, reliable, and controllable power supply. Second, these systems come in varying sizes, spanning over large geographical regions. The control of these dispersed and diverse systems raises scalability challenges. Third, the performance modeling and fault detection in sustainable energy systems is still an active research area. Finally, …


X-Band Phased-Array Weather-Radar Polarimetry Testbed, William Heberling Iv May 2022

X-Band Phased-Array Weather-Radar Polarimetry Testbed, William Heberling Iv

Doctoral Dissertations

Phased-array weather radar have potential to replace reflector dish radar in major weather radar networks such as NEXRAD, providing faster update times and greater scan flexibility. However, the use of electronic scanning introduces polarization errors on weather radar measurables, requiring polarimetric bias calibration. The sources of polarimetric bias have been described theoretically, but experimental verification is still limited. Additionally, no standard method of calibration for polarimetric bias exists for phased-arrays. Therefore, the University of Massachusetts Amherst (UMass) presents a fully operational X-Band phased-array weather radar polarimetric testbed. The testbed evaluates the calibration of a planar dual-polarization X-band phased-array radar through …


Modeling Chain Packing In Complex Phases Of Self-Assembled Block Copolymers, Anugu Abhiram Reddy Mar 2022

Modeling Chain Packing In Complex Phases Of Self-Assembled Block Copolymers, Anugu Abhiram Reddy

Doctoral Dissertations

Block copolymer (BCP) melts undergo microphase seperation and form ordered soft matter crystals with varying domain shapes and symmetries. We study the con- nection between diblock copolymer molecular designs and thermodynamic selection of ordered crystals by modeling features of variable sub-domain geometry filled with individual blocks within non-canonical sphere-like and network phases that together with layered, cylindrical and canonical spherical phases forms “natural forms” of self- assembled amphiphilic soft matter at large. First, we present a model to revise our understanding of optimal Frank-Kasper sphere-like morphologies by advancing the- ory to account for varying domain volumes. We then develop generic …


Moving Polygon Methods For Incompressible Fluid Dynamics, Chris Chartrand Mar 2022

Moving Polygon Methods For Incompressible Fluid Dynamics, Chris Chartrand

Doctoral Dissertations

Hybrid particle-mesh numerical approaches are proposed to solve incompressible fluid flows. The methods discussed in this work consist of a collection of particles each wrapped in their own polygon mesh cell, which then move through the domain as the flow evolves. Variables such as pressure, velocity, mass, and momentum are located either on the mesh or on the particles themselves, depending on the specific algorithm described, and each will be shown to have its own advantages and disadvantages. This work explores what is required to obtain local conservation of mass, momentum, and convergence for the velocity and pressure in a …


Decision-Analytic Models Using Reinforcement Learning To Inform Dynamic Sequential Decisions In Public Policy, Seyedeh Nazanin Khatami Mar 2022

Decision-Analytic Models Using Reinforcement Learning To Inform Dynamic Sequential Decisions In Public Policy, Seyedeh Nazanin Khatami

Doctoral Dissertations

We developed decision-analytic models specifically suited for long-term sequential decision-making in the context of large-scale dynamic stochastic systems, focusing on public policy investment decisions. We found that while machine learning and artificial intelligence algorithms provide the most suitable frameworks for such analyses, multiple challenges arise in its successful adaptation. We address three specific challenges in two public sectors, public health and climate policy, through the following three essays. In Essay I, we developed a reinforcement learning (RL) model to identify optimal sequence of testing and retention-in-care interventions to inform the national strategic plan “Ending the HIV Epidemic in the US”. …


Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber Mar 2022

Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber

Doctoral Dissertations

Mesoscale materials, with feature sizes in the range of one hundred nanometers to tens of micrometers, are ubiquitous in Nature. In organisms, mesoscale building blocks connect the properties of underlying molecular and nanoscructures to those of macroscale, organism-scale materials through hierarchical assemblies of recurring structural motifs. The collective action of large numbers of mesoscale features can afford stunning features like the structural color of the morpho butterfly wing, calcium ion-mediated movement in muscle, and wood structures like xylem that can support enormous external compressive loads and negative internal pressure to transport nutrients throughout an organism. In synthetic systems, the design, …


Designing Nonflammable Polymers And Blends Containing Deoxybenzoin Derivatives, Elizabeth Stubbs Feb 2022

Designing Nonflammable Polymers And Blends Containing Deoxybenzoin Derivatives, Elizabeth Stubbs

Doctoral Dissertations

The importance of synthetic polymers in everyday life continues to grow, owing to their societal importance for improving our standard-of-living and enabling advances spanning medicine, electronics, construction materials, transportation. While niche applications occupy a small fraction of the overall volume of polymers produced, large scale applications tend to employ lower cost materials, such as polyethylene, polypropylene, and polystyrene. In addition to environmental considerations connected to these polymerized hydrocarbons, produced in excess of 380 million tons per year worldwide, their inherent flammability creates additional requirements associated with their manufacturing and use. Societal benefits of such polymers are extensive, and thus, there …


Tailoring Interfaces And Composition For Stable And Efficient Perovskite Solar Cells, Hamza Javaid Feb 2022

Tailoring Interfaces And Composition For Stable And Efficient Perovskite Solar Cells, Hamza Javaid

Doctoral Dissertations

Metal halide perovskite solar cells (PSCs) have revolutionized the field of thin film photovoltaics. Within a decade, the power conversion efficiencies (PCEs) have increased at a phenomenal rate, rising from 3.8% to more than 25% in single-junction devices, moving them ahead of the current silicon-based technology. The high efficiencies of perovskite solar cells (PSCs) and their other unique properties arise from a combination of organic and inorganic components and electronic-ionic conduction, making them excellent candidates for a plethora of applications. However, PSCs face a significant—and ironic—roadblock to commercialization: these light-harvesting materials degrade under sunlight—the very condition they would need …


Advanced Materials Design Using Application-Based Processing Techniques, Daniel S. Camarda Oct 2021

Advanced Materials Design Using Application-Based Processing Techniques, Daniel S. Camarda

Doctoral Dissertations

This dissertation pertains to generating advanced materials using application-based processing techniques. First, billets consisting of PTFE sintering powders are evaluated using Thermomechancal Analysis. It was found that both shape change and volume change are associated with enthalpic and entropic recoil, respectively. These phenomena, due to melting and stored energy during the powder compaction process, were found to be molecular weight dependent. Additionally, kinetics of the recovery and sintering process were found to be slower in blended specimens than pure samples. Next, the creation of graft copolymers by selectively grafting a second polymer to the amorphous fraction of a semi-crystalline polymer …


Enabling Declarative And Scalable Prescriptive Analytics In Relational Data, Matteo Brucato Oct 2021

Enabling Declarative And Scalable Prescriptive Analytics In Relational Data, Matteo Brucato

Doctoral Dissertations

Constrained optimization problems are at the heart of significant applications in a broad range of domains, including finance, transportation, manufacturing, and healthcare. They are often found at the final step of business analytics, namely prescriptive analytics, to allow businesses to transform a rich understanding of data, typically provided by advanced predictive models, into actionable decisions. Modeling and solving these problems has relied on application-specific solutions, which are often complex, error-prone, and do not generalize. Our goal is to create a domain-independent, declarative approach, supported and powered by the system where the data relevant to these problems typically resides: the database. …


Designing Stimuli-Responsive Nanocomposites To Investigate Interface Dynamics, Huyen Vu Jul 2021

Designing Stimuli-Responsive Nanocomposites To Investigate Interface Dynamics, Huyen Vu

Doctoral Dissertations

Inspired by nature, this research focuses on designing multifunctional renewable nanocomposites with high toughness and stimuli-responsiveness. In recent years, cellulose nanocrystals (CNCs) have been explored due to their abundance, renewable resource, and unique mechanical strength and structural coloration. CNCs naturally self-assemble into the helicoidal (Bouligand) structure that effectively endure high impacts but is brittle without an attendant soft phase. A thermoresponsive polymer, poly(diethylene glycol methyl ether methacrylate) (PMEO2MA), was incorporated into CNCs via evaporation-induced self-assembly to improve toughness of the resulting nanocomposites and to study responses in polymer dynamics under varying temperature and humidity conditions. To study microscopic …


Thermoelectric Transport In Disordered Organic And Inorganic Semiconductors, Meenakshi Upadhyaya Jul 2021

Thermoelectric Transport In Disordered Organic And Inorganic Semiconductors, Meenakshi Upadhyaya

Doctoral Dissertations

The need for alternative energy sources has led to extensive research on optimizing the conversion efficiency of thermoelectric (TE) materials. TE efficiency is governed by figure-of-merit (ZT) and it has been an enormously challenging task to increase ZT > 1 despite decades of research due to the interdependence of material properties. Most doped inorganic semiconductors have a high electrical conductivity and moderate Seebeck coefficient, but ZT is still limited by their high lattice thermal conductivity. One approach to address this problem is to decrease thermal conductivity by means of alloying and nanostructuring, another is to consider materials with an inherently low …


Enhancing The Intracellular Availability Of Protein Cargoes In Polymer-Mediated Delivery, Christopher R. Hango Jun 2021

Enhancing The Intracellular Availability Of Protein Cargoes In Polymer-Mediated Delivery, Christopher R. Hango

Doctoral Dissertations

Protein drugs, including antibodies, are rapidly emerging as the top-selling pharmaceuticals worldwide owing to their unparalleled specificity and biocompatibility. However, none of the currently-approved protein therapeutics act intracellularly, despite the vast majority of potential drug targets residing within the cell. This is due mainly to the paramount challenge of transporting hydrophilic macromolecular cargoes across the plasma membrane. As such, effective protein carriers are essential for the advancement of modern medicine. Despite significant advances, many challenges still plague protein delivery. Following membrane transduction, delivery vectors must preserve the structure and activity of their cargoes while transporting them to the correct subcellular …


Electrospinning Fibers Via Complex Coacervation, Xiangxi Meng Apr 2021

Electrospinning Fibers Via Complex Coacervation, Xiangxi Meng

Doctoral Dissertations

Electrospun fibers are high-surface-area materials widely used in applications ranging from batteries to wound dressings. Typically, an electrospinning precursor solution is prepared by dissolving a high-molecular-weight polymer in an organic solvent to form a sufficiently entangled solution. Our approach bypasses the requirement for entanglements and completely avoids toxic chemicals by focusing on using an aqueous complex coacervates solution. Coacervates are a dense, polymer-rich liquid phase resulting from the associative electrostatic complexation of oppositely charged macroions. We were the first to demonstrate that liquid complex coacervates could be successfully electrospun into polyelectrolyte complex (PEC) fibers. A canonical coacervate system was formed …


Engineering Stimuli-Responsive Polymeric Nanoassemblies: Rational Designs For Intracellular Delivery Of Biologics, Kingshuk Dutta Dec 2020

Engineering Stimuli-Responsive Polymeric Nanoassemblies: Rational Designs For Intracellular Delivery Of Biologics, Kingshuk Dutta

Doctoral Dissertations

Biologic drugs have gained enormous research attention in recent years as reflected by the development of multiple candidates to the clinical pipelines and an increased percentage of FDA approval. This is reasoned by the fact that biologics have been proven to deliver more predictive and promising benefits for many hard-to-cure diseases by ‘drugging the undruggable’ targets. However, the challenges associated with biologic drug development are multi-fold, viz, poor encapsulation efficacy, systemic instability, low cellular internalization and endosomal escape capability. Thus, it is essential to develop new molecular strategies that can not only address the associated drug delivery challenges, but also …