Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

New Jersey Institute of Technology

Theses/Dissertations

Gaseous oxidized mercury

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Atmospheric Mercury Chemistry: Detection, Kinetics, And Mechanism, Na Mao May 2022

Atmospheric Mercury Chemistry: Detection, Kinetics, And Mechanism, Na Mao

Dissertations

The presence of mercury in the environment is of global concern due to its toxicity. The atmosphere is an important transient reservoir for mercury released by human activities and natural sources. The knowledge of atmospheric mercury chemistry is critical for understanding the global biogeochemical cycle. In the atmosphere, mercury primarily exists in three forms: gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particulate-bound mercury (PBM). Over the last decade, the existing knowledge of mercury cycle has dramatically changed: (1) There has been increasing evidence that current detection methods do not accurately quantify gaseous oxidized mercury and a technique which …


Speciation Of Gaseous Oxidized Mercury Molecules Relevant To Atmospheric And Combustion Environments, Francisco J. Guzman May 2019

Speciation Of Gaseous Oxidized Mercury Molecules Relevant To Atmospheric And Combustion Environments, Francisco J. Guzman

Dissertations

Mercury is a pervasive and highly toxic environmental pollutant. Major anthropogenic sources of mercury emissions include artisanal gold mining, cement production, and combustion of coal. These sources release mostly gaseous elemental mercury (GEM), which upon entering the atmosphere can travel long distances before depositing to environmental waters and landforms. The deposition of GEM is relatively slow, but becomes greatly accelerated when GEM is converted to gaseous oxidized mercury (GOM) because the latter has significantly higher water solubility and lower volatility. Modeling GOM deposition requires the knowledge of its molecular identities, which are poorly known because ultra-trace (tens to hundreds part …